Каталог :: Металлургия

Курсовая: Металлургия цветных металлов

           Московский Государственный Институт Стали и Сплавов           
                      (Технологический Университет)                      
           

Кафедра металлургии цветных и благородных металлов

Курсовая работа на тему: Металлургия цветных металлов Выполнил: студент группы Руководитель: Комков А.А. ---=== Москва 2000 ===---

Содержание

1. Введение.....................3 2. Описание технологии получения катодной меди...4 3. Выбор технологии плавки на штейне..........8 4. Теоретические основы процесса Ванюкова......10 5. Расчет материального и теплового баланса......13 6. Заключение...................28

Введение

Металлургия меди, а также других тяжелых цветных ме­таллов является ведущим звеном отечественной цветной металлур­гии. На долю тяжелых цветных металлов в РФ прихо­дится значительная часть валовой продукции отрасли. Значение меди из года в год возрастает, особенно в связи с бурным развитием энергетики, электроники, машинострое­ния, авиационной, космической и атомной техники. Дальнейшее развитие и технический уровень медного и никелевого производств во многом определяют технический прогресс многих отраслей на­родного хозяйства нашей страны, в том числе микропроцессорной техники. Для получения меди используются всевозможные способы плавок, например, плавка медных концентратов в электрических, отражательных, шахтных печах, при использовании процесса конвертирования медных штейнов, благодаря автогенным плавкам во взвешенном состоянии, на штейне и др. На сегодняшний день существует несколько основных процессов автогенных плавок : процесс «Норанда», «Уоркра», «Мицубиси» и Ванюкова. К сожалению, разработка новый конструкций печей и различных процессов требует значительных капиталовложений, а свободный средств у Российских предприятий недостаточно. В данной курсовой работе будет рассмотрена технология А.В. Ванюкова или ПЖВ.

Технология получения катодной меди

Электролитическое рафинирование меди преследует две цели: 1) получение меди высокой чистоты (99,90—99,99% Си), удовлетворяющей требованиям большинства потребителей; 2) извлечение попутно с рафинированием благородных и других ценных компонентов (Se, Те, Ni, Bi и др.). Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролит­ной меди. Именно поэтому при конвертировании медных штейнов стремятся использовать в качестве флюса золотосодержащие кварциты. Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в элект­ролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы — катод­ные основы. При включении ванн в сеть постоянного тока происходит элек­трохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом. В результате электролитического рафинирования получают катодную медь; шлам, содержащий благородные металлы; селен; теллур и загрязненный электролит, часть которого иногда исполь­зуют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап). Электролитическое рафинирование меди основано на различии ее электрохимических свойств и содержащихся в ней примесей. В таблице приведены нормальные электродные потенциалы меди и наиболее часто встречающихся в ней примесей. Медь относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных растворах (обычно в сернокислых). На катоде протекают те же электрохимические реакции, но в обратном направлении. Соотношение между одновалентной и двух­валентной медью в растворе определяется равновесием реакции диспропорционирования. Следовательно, в состоянии равновесия концентрация в растворе ионов Сu+ примерно в тысячу раз меньше, чем кон­центрация ионов Си2+. Тем не менее реакция имеет сущест­венное значение для электролиза. Она в частности определяет переход меди в шлам. В начальный момент вблизи анода в раст­воре соотношение двух- и одновалентной меди соответствует кон­станте равновесия. Однако вследствие большего заряда и меньшего ионного радиуса скорость перемещения двухвалентных ионов к катоду превышает скорость переноса ионов одновалентных. В ре­зультате этого в прианодном слое концентрация ионов Си 2+ ста­новится выше равновесной и реакция начинает идти в сто­рону образования тонкого порошка меди, выпадающего в шлам. Как указывалось выше, электролитическое рафинирование осу­ществляют в сернокислых растворах. Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электро­лит наряду с медным купоросом свободной серной кислоты су­щественно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с под­вижностью крупных катионов и сложных анионных комплексов. Для улучшения качества катодной поверхности в электролиты для рафинирования меди на всех заводах обязательно вводят разнообразные поверхностно-активные (коллоидные) добавки: клей (чаще столярный), желатин, сульфитный щелок. В процессе электролиза на поверхности катода могут образо­вываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстоя­ния ведет к уменьшению электрического сопротивления, а следо­вательно, к местному увеличению плотности тока. Последнее в свою очередь обусловливает ускоренное осаждение меди на дендри­те и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом. При наличии дендритов сильно развитая поверхность ка­тода удерживает большое количество электролита и плохо промы­вается, что не только ухудшает качество товарных катодов, но и может вызвать брак катодной меди по составу. Одно из объясне­ний механизма действия поверхностно-активных веществ заклю­чается в том, что они адсорбируются на наиболее активных частях поверхности и при этом вызывают местное повышение элек­трического сопротивления, что и препятствует росту дендрита. В результате поверхность катодов получается более ровной, а катод­ный осадок более плотным. После выравнивания катодной поверх­ности коллоидная добавка десорбирует в электролит. Растворы коллоидных добавок непрерывно вводят в циркули­рующий электролит. Вид и расход поверхностно-активных веществ различны для каждого предприятия. Обычно применяют одновре­менно две добавки. На 1 т получаемой катодной меди расходуют 15—40 г клея, 15—20 г желатина, 20—60 г сульфитных щелоков или 60—100 г тиомочевины. Основными требованиями, предъявляемыми к электролиту, явля­ются его высокая электропроводность (низкое электрическое сопротивление) и чистота. Однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок, обязательно содержат растворенные примеси, содержащиеся до этого в анодной- меди. Поведение примесей анодной меди при электролитическом рафинировании определяется их положением в ряду напряжений. По электрохимическим свойствам примеси можно разделить на четыре группы: I группа — металлы более электроотрицательные, чем медь (Ni, Fe, Zn и др.); II группа — металлы, близко стоящие в ряду напряжений к-меди (As, Sb, Bi); III группа — металлы более электроположительные, чем медь (Au, Ag и платиноиды); IV группа — электрохимически нейтральные в условиях рафи­нирования меди химические соединения (Cu2S, Cu2Se, Cu2Te, AuTe2, Ag2Te). Примеси первой группы, обладающие наиболее электроотрица­тельным потенциалом, практически полностью переходят в электро­лит. Исключение составляет лишь никель, около 5% которого из анода осаждается в шлам в виде твердого раствора никеля в меди. Твердые растворы по закону Нернста становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам. Особо по сравнению с перечисленными группами примесей-ведут себя свинец и олово, которые по электрохимическим свой­ствам относятся к примесям I группы, но по своему поведению в процессе электролиза могут быть отнесены к приме­сям III и IV групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS04 и метаоловянную кислоту H2SnO3. Электроотрицательные примеси на катоде в условиях электро­лиза меди практически не осаждаются и постепенно накаплива­ются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно рас­строиться. Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода. Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений . раство­ра или основных солей, особенно при их значительной концентра­ции в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe. Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зре­ния возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих суль­фатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подверга­ются гидролизу, образуя основные соли (Sb и Bi) или мышьяко­вистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков («плавучий» шлам), которые захватывают частично и мышьяк. В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек «плавучего» шлама. Таким образом, примеси II группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей II группы в электролите составляют, г/л: 9 As; 5 Sb и 1,5 Bi. Более электроположительные по сравнению с медью примеси (III группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряже­ний должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди. Переход золота в шлам составляет более 99,5% от его содер­жания в анодах, а серебра — более 98%. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для умень­шения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество иона хлора. Несмотря на практически полный переход золота и серебра в шлам, они все же в небольшом количестве попадают в катодные осадки. Объясняется это механическим захватом взмученного шлама и отчасти явлением катофореза. На механический перенос шлама на катод влияют применяемая плотность тока и взаимосвя­занная с ней скорость циркуляции электролита. С увеличением скорости циркуляции вследствие взмучивания шлама переход золо­та и серебра на катод возрастает. При выборе плотности тока и способа циркуляции электролита необходимо учитывать содержание благородных металлов в анодах. В случае их повышенного содер­жания плотность тока должна быть меньше. Снижению переноса шлама на катод способствует также наличие в ванне зоны отстаи­вания (область от нижнего конца катода до дна ванны). На многих заводах электролит перед его возвращением в ванну в цикле цирку­ляции подвергают фильтрованию, что уменьшает потери шлама и обеспечивает получение более чистой меди. Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси IV группы). Хотя в принципе химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специаль­ных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99% селена и теллура. Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом'. Основными характеристиками, определяющими параметры и пока­затели электролитического рафинирования меди, являются плот­ность тока, выход металла по току, напряжение на ванне, удельный расход электроэнергии. Плотность тока является важнейшим параметром процесса элек­тролиза. Она выражается в амперах на единицу поверхности элек­трода (D=I/S). В металлургии меди ее принято выражать в ампе­рах на квадратный метр площади катодов. По закону Фарадея на каждый 1 А • ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А • ч. Следова­тельно, с увеличением плотности тока интенсивность (производи­тельность) процесса электролиза возрастает. Величина плотности тока, при которой проводят процесс элек­тролитического рафинирования, определяет все его основные техни­ко-экономические показатели: напряжение на ванне, выход по току, расход электроэнергии, а также капитальные и эксплуатационные затраты. С увеличением плотности тока при прочих равных услови­ях увеличивается производительность цеха, уменьшаются число потребных ванн, затраты на капитальное строительство и рабочую силу, но возрастают затраты на электроэнергию. Следует отметить, однако, что с увеличением плотности тока увеличиваются потери благородных металлов за счет большего взмучивания шлама и захвата его растущим катод­ным осадком. В настоящее время применение особых режимов элек­тролиза (реверсивного тока, измененной системы циркуляции элек­тролита и др.) позволяет довести плотность тока до 500 А/м2 и более. Электрохимический эквивалент меди составляет 1,1857 г/А • ч. Однако практически при электролизе для выделения 1 г-экв метал­ла расходуется электричества больше. Это кажущееся противоречие объясняется тем, что часть электрического тока расходуется на побочные электрохимические процессы и утечку тока. Степень использования тока на основной электрохимический процесс назы­вается выходом металла по току. В практике электрометаллургии цветных металлов в большин­стве случаев приходится иметь дело с катодным выходом по току, так как масса катодного осадка определяет конечный выход товар­ной продукции. Преднамеренный повышенный перевод меди в электролит за счет химического растворения часто обусловливают конъюнктурными соображениями. Избыточная медь может быть выделена из электроли­та в виде медного купороса при его регенерации. В тех случаях, когда потребность в медном купоросе, используемом в основном для борьбы с болезнями и вредителями сельскохозяйственных растений, очень велика (например, в НРБ), допускается работа электролиз­ных цехов с повышенной температурой электролита. Выбор технологии плавки на штейне Почти столетие в металлургии меди и около полувека в металлур­гии никеля (в Канаде) «господствует» отражательная плавка. Свое широкое распространение она получила благодаря освоенности плавки применительно к переработке различных видов мелких руд­ных материалов, главным образом флотационных концентратов, простоте организации процесса почти в любых условиях металлургического производства. Основными причинами острой необходи­мости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами окси­дов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необхо­димостью активного использования теплотворной способности суль­фидов и ряда других рассмотренных выше факторов были разрабо­таны и освоены новые способы плавки медного сырья. Главным образом это — автогенные процессы, совмещающие в себе обжиг, плавку и конвертирование. В этих процессах большая часть серы переходит в отходящие газы с достаточно высоким и постоянным содержанием SO2. Ниже приведены сравнительные основные технико-эконо­мические показатели применяемых в настоящее время в медной промышленности пирометаллургических процессов. Уже в начальной стадии освоения процесса плавки в жидкой ванне достигнута удельная производительность, превышающая более чем в 15 раз производительность отражательной печи при плавке сырой шихты, и в 6—8 раз производительность КВП и фин­ской технологии. Возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков. Процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов. Для осущест­вления процесса создана надежная и долговечная аппаратура. Про­цесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава. По своим показателям он превосходит все известные в мировой практике процессы. Процесс следует считать в основном освоенным и заслуживающим широкого и быстрого внедрения в отечественной медной и никелевой промышленности. Помимо основного использования для плавки сульфидных кон­центратов на штейн, плавка в жидкой ванне пригодна для более широкого применения. При внедрении процесса в жидкой ванне необходимо учитывать его возможности, пути и направления раз­вития, которые будут осуществляться уже в недалеком будущем. К перспективным направлениям относятся прежде всего прямое получение черновой меди и глубокое обеднение шлаков, прямое получение медно-никелевого файнштейна, плавка коллективных медно-цинковых концентратов, комплексная переработка отвальных шлаков. Заслуживает внимания также использование принципов плавки в жидкой ванне для переработки окисленных никелевых и железных руд. Сравнительные технико-экономические показатели некоторых видов плавки сульфидных медных концентратов
ПоказательПЖВКФПФинскаяКИ ВЦЭТНорандаМицубисиОтража­тельная плавка сырой шихты

Удельный проплав,

т/(м2 • сут)

60—8010—139—123—510—11До 204—5

Содержание меди, %:

в штейне

45—5537—406040—5070-756520—30

в шлаке (без обед­

нения)

0,5—0,6До 1,21—1,50,3—0,650,50,4—0,5

Содержание Si02 в

шлаке, %

30—3228—3429—3030—342230—3534—42
Влажность шихты, %6—8<1<1<110—13<16—8

Максимальная круп­

ность шихты, мм

До 500,10,10,11015
Пылевынос, % 19—127—1053—51—2

Содержание Оа в

дутье, %

60—659535—409526—2845До 25

Содержание SOz в

газах, %

20—4070—7518—2035—506—7351—2

Расход условного топ­

лива, %

До 2До 2До 510—129—103—518—22
Процесс ПЖВ обеспечивает лучшую производительность среди всех типов процессов, превосходя их на десятки процентов. Содержание меди в штейне составляет порядка 45-55%, что является средним уровнем; в шлаке меди, фактически, минимальное количество, допустимое сегодняшними технологиями. Благодаря этому процессу достигается уверенное распределение 30% SiO2 в шлак. Процесс может перерабатывать достаточно крупную шихту, что снижает затраты на ее измельчение и обработку. Низкий расход топлива также вносит свою лепту в то, что технологический процесс А.В.Ванюкова один из лучших по своим технико- экономическим показателям. Процесс плавки в жидкой ванне (ПЖВ) Оригинальный процесс автогенной плавки сульфидных мед­ных и медно-цинковых концентратов, названный авторами данной книги «плавкой в жидкой ванне», начал разрабатываться в Совет­ском Союзе в 1951 г Дальнейшие разработка и внедрение до 1986 г. велись под общим научным руководством проф. А. В. Ванюкова. Первые испытания этого метода плавки были проведены в лабо­раторных и заводских условиях в 1954—1956 гг. В настоящее время по методу плавки в жидкой ванне работают промышленные установки на медном заводе Норильского ГМК и Балхашском горнометаллургическом комбинате. Схема печи для плавки в жидкой ванне: 1 — шихта; 2 — дутье; 3 — штейн; 4 — шлак; 5 — газы; 6 — кладка печи; 7 — медные литые кес­соны; 8 — фурмы; 9 загрузочная воронка; 10 — аптейк; 11 — штейновый сифон; 12 шлаковый сифон Процесс ПЖВ запатентован в ряде зарубежных стран. При разработке процесса плавки в жидкой ванне ставилась задача создания максимально благоприятных условий для проте­кания всех физико-химических процессов. Предложено несколько вариантов технологического и аппара­турного оформления процесса в зависимости от состава исходного сырья и конечных результатов его переработки. Рассмотрим работу плавильной печи для автогенной и полуавтогенной плавки сульфид­ных медных концентратов с получением богатого штейна. Для осуществления процесса плавки предложено использовать частично кессонированную печь шахтного типа. Оптимальная длина промышленных печей определяется потреб­ной единичной мощностью агрегата, т. е. его абсолютной суточной производительностью, и может изменяться от 10 до 30 м и более. Ширина печей при этом с учетом возможностей дутьевого хозяйства и свойств расплавов составляет 2,5—3, высота шахты 6—6,5 м. Отличительной особенностью конструкции печи является высокое расположение дутьевых фурм над подом (1,5—2 м). Содержание кислорода в дутье для обеспечения автогенного режима при плавке сухой шихты с влажностью менее 1—2% со­ставляет 40—45%, влажной (6—8% влаги) 55—65%. В печи можно плавить как мелкие материалы, так и кусковую шихту. Крупную и влажную шихту загружают непосредственно на поверхность рас­плава. При необходимости сухие мелкие и пылевидные материалы могут вдуваться через фурмы. Таким образом, плавление шихты и окисление сульфидов в процессе ПЖВ осуществляются непосред­ственно в слое расплава. Шлак и штейн выпускаются раздельно из нижней части ванны с помощью сифонов. Характерной особенностью плавки в жидкой ванне, отличающей ее от всех рассмотренных ранее процессов, является то, что плав­ление и окисление сульфидов осуществляются в ванне шлака, а не штейна, и шлак движется в печи не в горизонтальном направлении, как это имеет место во всех известных процессах плавки, а в верти­кальном — сверху вниз. Горизонтальной плоскостью по осям фурм расплав в печи делит­ся на две зоны: верхнюю надфурменную (барботируемую) и ниж­нюю подфурменную, где расплав находится в относительно спокой­ном состоянии. В надфурменной зоне осуществляются плавление, растворение тугоплавких составляющих шихты, окисление сульфидов и укрупне­ние мелких сульфидных частиц. Крупные капли сульфидов быстро оседают в слое шлака, многократно промывая шлак за время его движения сверху вниз в подфурменной зоне. При непрерывном осу­ществлении процесса устанавливается динамическое равновесие между количеством поступающих с загрузкой мелких сульфидных частиц, скоростью их укрупнения и отделения от шлака. В резуль­тате одновременного протекания этих процессов устанавливается постоянное содержание сульфидов (капель) в шлаке, лежащее на уровне 5—10% от массы расплава. Таким образом, все процессы в надфурменной области протекают в шлако-штейновой эмульсии, в которой преобладает шлак. Окисление сульфидов, как известно, является очень быстрым процессом и обычно не ограничивает конечную производительность агрегатов. В производственных процессах желательно не только не повышать, но даже замедлять скорость окисления сульфидов. Дей­ствительно, большие скорости окисления сульфидов, например при продувке жидких сульфидов кислородом, приводят к чрезмерному повышению температуры в области фурм. Окисление сульфидов в шлако-штейновой эмульсии протекает менее интенсивно, чем в сульфидном расплаве, фокус горения рас­тягивается, что позволяет избежать локального повышения темпе­ратуры в области фурм даже при использовании чистого кислорода. Это в свою очередь облегчает задачу создания надежной и дол­говечной аппаратуры. При этом скорость окисления остается доста­точно высокой и степень использования кислорода на окисление сульфидов практически равна 100% при любом необходимом его количестве, подаваемом в расплав. Таким образом, и при окислении сульфидов в шлако-штейновой эмульсии скорость их окисления не лимитирует производительности агрегата. Возможность интенсив­ного окисления сульфидов в шлако-штейновой эмульсии без боль­шого локального повышения температуры в области фурм является важным достоинством плавки в жидкой ванне. Окисление сульфидов в шлако-штейновой эмульсии представля­ет собой сложный многостадийный процесс, состоящий из окисле­ния капелек штейна, окисления растворенных в шлаке сульфидов, окисления FeO шлака до магнетита и окисления сульфидов магне­титом. Таким образом, шлак также является передатчиком кисло­рода. По последним данным, наибольшее значение имеет стадия окисления сульфидов, растворенных в шлаке. Характерная особенность окисления сульфидов в шлако-штейно­вой эмульсии состоит в том, что оно не сопровождается образова­нием первичных железистых шлаков и выпадением мелких суль­фидных частиц. Оксиды, образующиеся на поверхности сульфидных капель, немедленно растворяются в шлаке конечного состава. Отсутствие условий для образования значительных количеств мелкой сульфидной взвеси является важным достоинством плавки в жидкой ванне, создающим предпосылки для получения бедных отвальных шлаков. Высокая степень использования кислорода обеспечивает про­стое управление составом штейна и соотношением количеств пода­ваемого через фурму кислорода и загружаемых за то же время концентратов. Состав штейна можно регулировать в широком диа­пазоне вплоть до получения белого матта или даже черновой меди. Напомним, что потери меди со шлаком начинают резко воз­растать, когда ее содержание в штейне превысит 60%. Поэтому при плавке на штейн, если в технологической схеме не предусматрива­ется специальное обеднение шлака, увеличивать содержание меди в штейне свыше 50—55% нецелесообразно. При получении белого матта или черновой меди в технологическую схему должна обяза­тельно включаться операция обеднения шлаков. Растворение тугоплавких составляющих шихты является одним из относительно медленных процессов. Энергичный барботаж ванны резко ускоряет процесс растворения кварца и компонентов пустой породы, что позволяет использовать даже сравнительно крупные флюсы. Промышленные испытания показали, что при крупности кварца около 50 мм скорость его растворения не влияет на произ­водительность печи, по крайней мере, вплоть до удельного пропла­ва, равного 80 т/(м2 • сут). Высокая скорость растворения туго­плавких составляющих является важной особенностью плавки в жидкой ванне. Минимальное содержание магнетита в шлаках — обязательное условие совершенного плавильного процесса. Как уже говорилось, с увеличением содержания магнетита резко возрастает содержание растворенной меди в шлаках. Кроме того, повышение содержания магнетита (степени окисленности системы) приводит к снижению межфазного натяжения на границе раздела штейна и шлака.

ИСХОДНЫЕ ДАННЫЕ РАСЧЕТОВ

1. Производство по влажному концентратут/час80
2. Состав концентрата%
Cu17
Fe28
S36
SiO25
CaO3
MgO0
Al2O30
Zn6
Pb2
3. Влажность5
4. Обогащение дутья85
5. Содержание меди в штейне45
6. Извлечение меди в штейн97
7. Выход в штейн
Pb20
Zn35
8. Выход в газ
Pb22
Zn12
9. Состав кварцевого флюса
Si0270
Влажн.6
10. Состав шлака
Si0233
Ca06
11. Подача конверторного шлакаТ/час10
12. Температура конверторного шлакаC1200
13. Температура продуктовC1250
14. Состав топлива%
CH40
C95
Влажн.6
15. Тепло сгорания природного газаКкал/м30
85% концентрата меди в виде халькопирита. Извлечение Cu из конверторного шлака – 80%. Состав конверторного шлака : Cu – 3%, Fe – 52%, SiO2 – 24%/ Содержание прочих в штейне – 1%. Содержание O2 в техническом кислороде 96% (остальное N2) Концентрация магнетита в конверторном шлаке – 30%.

Расчет основных сульфидных минералов

Дополним систему еще одним уравнением:

Таблица рационального состава концентрата

CuFeS2CuSCu2SFeS2ZnSPbSCaCO3MgCO3SiO2Al2O3Проч.Всего
Cu14,450,132,41--------17
Fe12,71--15,29-------28
S14,560,070,6117,522,940,31-----36
Zn----6------6
Pb-----2-----2
SiO2--------5--5
CaO------3----3
CO2------2,35----2,35
Проч.----------0,650,65
Всего41,720,23,0232,818,942,315,35-5-0,65100

Расчет состава конверторного шлака

Исходные данные: Cu – 3%

Fe – 52%

SiO2 – 24% Fe3O4 – 30%
КомпонентКг%
SiO23,1624
Cu0,393
Fe6,8452
O2,2817,32
Прочие0,483,68
Итого13,16100
Зададим извлечение Cu в штейн Извлечение Cu из конвертерного шлака – 80% Извлечение Cu в штейн из концентрата – 97%

Расчет состава и количества штейна

Cодержание Cu в штейне – 45%. Cодержание S в штейне – 25%
КомпонентКг%
Cu16,845
Fe7,2819,51
S9,3325
Pb0,41,07
Zn2,15,62
O1,042,8
Прочие0,371
Всего37,33100

Расчет самоплавкого шлака

При
КомпонентКг%Норма, %
Si028,1615,3533
Fe27,5651,83
Pb1,162,18
Zn3,185,98
CaO35,646
O8,7616,47
Cu0,591,11
Прочие0,761,43
Всего53,17100

Балансовое уравнение по кремнезему

Балансовое уравнение по кальцию

Дано: Cостав флюса 1) SiO2-70% 2) СaO – 56% Прочие – 30% Прочие – 0,08% W=6 W=0
КомпонентКг%

SiO2

27,0533
Fe27,5632,63
Pb1,161,41
Zn3,183,88
CaO4.926
Cu0,590,07
O8,7610,69
Прочие8,8510,80
Всего81,96100
W=6

Расчет необходимого количества дутья

FeS + 3/2O2 = FeO + SO2 1/2S2 + O2 = SO2 PbS + 3/2O2 = PbO + SO2 ZnS + 3/2O2 = ZnO + SO2
КомпонентКгНм3%
SO253,3418,6755,17
N25,274,2212,47
H2O6,988,6925,68
CO23,851,965,79
Pb0,440,050,15
Zn0,720,250,74
Итого70,633,84100
МатериалКол-воCuFeSSiO2O2CaON2H2OCO2PbZn
Загружено
1. К-т105,26172836535,262,3526
2. Кварц28,7018.891.72
3. Изв-к3.421.921.5
4. Кон.шл.13.160,396,843,162,28
5. Воздух5.301.244.06
6. Т.К.34.1632.961.20
Всего19017,3934,843627.0536.484.925.266.983.852 6
Получено
1. Штейн37,3316,807.289.331.040,42,1
2. Шлак81,960,5927,5627.058.764.921,163,18
3. Газы70.626.6726.675.266.983.850,440,72
Всего19017.3934.843627.0536.484.925.266.983.8526
Расчет тепла Расчет прихода тепла 1. 2. а) FeS + 3/2O2 = FeO + SO2 + 11025 б) 1/2S2 + O2 = SO2 +70900 в) ZnS + 3/2O2 = SO2 + ZnO +105560 г) PbS + 3/2O2 = SO2 + PbO +99760 д) 2FeO + SiO2 = (FeO)2 * SiO2 + 22200 е) CaO + SiO2 = CaO*SiO2 +21500 а) б) 2CuFeS2 = Cu2S + 2FeS + 1/2S2 FeS2 = FeS +1/2S2 2CuS = Cu2S + 1/2S2 в) г) д) е) Расчет расхода тепла На нагрев от 25 до 100 C Эндотермические реакции 1) 4CuFeS2 à 2Cu2S + 4FeS + S2 - 78600 2) 2FeS2 à 2FeS + S2 - 64600 3) CuS à ½Cu2S + ¼ S2 - 10675 4) CaCO3 à CaO + CO2 - 42500 Потери тепла Примем потери = 15% от 15607,47 ккал Расчет необходимого количества дутья На 1 кг угля.
С = 95 %0,893
Проч = 5 %0,047
W = 6%0,06
Итого1 кг
С + O2 = CO2 + 94052 ккал Окончательный состав отходящих газов
КомпонентКгНм3%
SO253,3418.6753.83
CO25.012.557.35
N25.524.4212.74
H2O7.028.7425.20
Pb0.440.050.14
Zn0.720.250.72
Всего72.0534.68100
Баланс по теплу
Приход

Ккал

Расход

Ккал

Горение топлива4857,33Тепло шлака30132,28
Тепло к.шлака4638,9Тепло штейна10289,08
Тепло реакций окисления79526,19Тепло отходящих газов20751,2
Реакции шлакообразования6193,82Испарение влаги4290,22
Эндотерм. Реакции15607.47
Потери14146,15
Всего95216.24*Всего95216.4*
*Погрешность вычислений = 0,000168% Заключение В данной курсовой работе был составлен тепловой и материальный баланс процесса плавки на штейне на примере плавки в жидкой ванне или процессе А.В.Ванюкова, который был выбран из-за своих технико-экономических показателей. Технологический процесс А.В.Ванюкова позволил перевести в конверторный шлак 24% кварца, 3% меди, 52% железа, 17,32% кислорода; в 45%-тый медный штейн: почти 20% железа, 25% серы; в шлак после добавления кварцевого и известнякового флюсов перешло: 33% кварца и 6% оксида кальция (согласно требуемым показателям), а также 33.63% железа и около 0.6% меди. В работе также был рассчитан тепловой баланс процесса, что позволило сделать следующие выводы: тепло на нагрев конверторного шлака составило 4638,9 ккал, на реакции окисления и шлакообразования: 85720,01 ккал, на нагрев штейна, шлака и отходящих газов с учетом требуемого топлива в размере 0,694 кг угля (95% C, 5% прочих) : 10289.08 ккал, 30132,28 ккал и 20751,2 ккал соответственно. Испарение влаги потребовало 4290,22 ккал, а потери составили 14146,15 ккал. Отходящие газы приняли окончательный вид: SO2 ~ 53,83%, CO2 ~ 7,35%, N2 ~ 12,74%. Необходимо заметить то, что объем требуемого дуться на сжигание 0,694 кг топлива составил 1,36 нм3. Таким образом, на примере данной работы, мы еще раз убедились в том, что процесс плавки по технологии А.В.Ванюкова является одним из лучших по своим технико-экономическим показателям, и, я надеюсь, что с развитием науки и появлением свободных денежных средств у предприятий, а также НИИ, позволит в будущем его усовершенствовать.