Каталог :: Математика

Билеты: Алгебра и Начало анализа

     

Алгебра и начала анализа.

1. Линейная функция y = ax + b, её свойства и график.

Ответ

2. Квадратичная функция y = ax2 + bx + c, её свойства и график.

Ответ

3. Функция y = k/x, её свойства и график, график дробно-линейной функции (на конкретном приме-ре).

Ответ

4. Показательная функция y = ax, её свойства и график.

Ответ

5. Логарифмическая функция y = logax, её свойства и график.

Ответ

6. Функция y = sin(x), её свойства и график.

Ответ

7. Функция y = cos(x), её свойства и график.

Ответ

8. Функция y = tg(x), её свойства и график.

Ответ

9. Функция y = ctg(x), её свойства и график.

Ответ

10. Арифметическая прогрессия, сумма первых n членов арифметической прогрессии.

Ответ

11. Геометрическая прогрессия, сумма первых n членов геометрической прогрессии. Сумма бесконечно убывающей геометрической прогрессии.

Ответ

12. Решение уравнения sin(x) = a, неравенств sin(x) > a, sin(x) < a.

Ответ

13. Решение уравнения cos(x) = a, неравенств cos(x) > a, cos(x) < a.

Ответ

14. Решение уравнения tg(x) = a, неравенств tg(x) > a, tg(x) < a.

Ответ

15. Формулы приведения (с выводом).

Ответ

16. Формулы синуса и косинуса суммы и разности двух аргументов (с доказательством).

Ответ

17. Тригонометрические функции двойного аргумента.

Ответ

18. Тригонометрические функции половинного аргумента.

Ответ

19. Формулы суммы и разности синусов, косинусов (с доказательством).

Ответ

20. Вывод формулы корней квадратного уравнения, теорема Виета.

Ответ

21. Логарифм произведения, степени, частного.

Ответ

22. Понятие производной, ее геометрический смысл и физический смысл.

Ответ

23. Правила вычисления производной.

Ответ
  1. Функция заданная формулой y = kx + b, где k и b - некоторые числа, называется линейной.
  2. Областью определения линейной функции служит множество R всех действительных чисел, т.к. выражение kx + b имеет смысл при любых значениях х.
  3. График линейной функции y = kx + b есть прямая. Для построения графика, очевидно, достаточно двух точек, если k 0.
  4. Коэффициент k характеризует угол, который образует прямая y = kx с положительным направлением оси Ох, поэтому k называется угловым коэффициентом. Если k > 0, то этот угол острый; если k < 0 - тупой; если k = 0, то прямая совпадает с осью Ох.
  5. График функции y = kx + b может быть постпоен с помощью параллельного переноса графика функции y = kx.
Ответ №2. Опр. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax2 + bx + c, где х - независимая переменная, а, b и с - некоторые числа, причем а 0. Графиком квадратичной функции является парабола. Свойства функции y = ax2(частный случай) при а > 0. 1. Если х = 0, то y = 0. График функции проходит через начало координат. 2. Если х 0, то y > 0. График функции расположен в верхней полуплоскости. 3. График функции симметричен относительно оси Oy. 4. Функция убывает в промежутке (- ; 0] и возрастает в промежутке [0; + ). 5. Наименьшее значение функция принимает при х = 0. Область значений функции [0; + ). Свойства функции y = ax2 при а < 0. 1. Если х = 0, то y = 0. График функции проходит через начало координат. 2. Если х 0, то y < 0. График функции расположен в нижней полуплоскости. 3. График функции симметричен относительно оси Oy. 4. Функция убывает в промежутке [0; + ) и возрастает в промежутке (- ; 0]. 5. Наименьшее значение функция принимает при х = 0. Область значений функции (- ; 0]. И, так, график функции y = ax2 + bx + c есть парабола, вершиной которой является точка (m; n), где m = , n= . Осью симметрии параболы служит прямая х = m, параллельная оси y. При а > 0 ветви параболы направлены вверх, при a < 0 - вниз. Ответ 3 Если переменная у обратно пропорциональна переменной х, то эта зависимость выражается формулой , где - коэффициент обратной пропорциональности.
  1. Область определения функции - есть множество всех чисел, отличных от нуля, т. е. .
  2. Графиком обратной пропорциональности у=k/x является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Такая кривая называется гиперболой. Если k>0, то ветви гиперболы расположены в I и III координатных четвертях; если же k<.0, то во II и IV координатных четвертях.
  3. Заметим, что гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко к ним приближается.
№ 4. Опр. Функция, заданная формулой y = ax, где а - некоторое положительное число, не равное еденице, называется показательной. 1. Функция y = ax при а>1 а) область определения - множество всех действительных чисел; б) множество значений - множество всех положительных чисел; в) функция возрастает; г) при х = 0 значение функции равно 1; д) если х > 0, то ax > 1; е) если х < 0, то 0< ax <1; 2. Функция y = ax при 0< а <1 а) область определения - множество всех действительных чисел; б) множество значений - множество всех положительных чисел; в) функция убывает; г) при х = 0 значение функции равно 1; д) если х > 0, то 0< ax <1; е) если х < 0, то ax > 1. №5.Опр. Функцию, заданную формулой y = loga x называют логарифмической функцией с основанием а. Свойства функции y = loga x при a>1: а) D(f) = R+; б) E(f) = R; в) функция возрастает; г) если x = 1, то loga x = 0; д) если 0<x<1, то loga x < 0; е) если x > 1, то loga x > 0. Свойства функции y = loga x при 0<a<1: а) D(f) = R+; б) E(f) = R; в) функция убывает; г) если x = 1, то loga x = 0; д) если 0 < x < 1, то loga x > 0; е) если x > 1, то loga x < 0. №6. Опр. Отношение катета прямоугольного треугольника, противолежащего острому углу, к гипотенузе называется синусом этого угла (обозначается sin ).
  1. область определения - множество всех действительных чисел;
  2. множество значений - [-1; 1];
  3. функция нечетная: sin(-x) = -sin(x) для всех ;
  4. функция периодическая с наименьшим положительным периодом ;
  5. sin(x) = 0 при x = ;
  6. sin(x) > 0 для всех ;
  7. sin(x) < 0 для всех ;
  8. функция возрастает на ;
  9. функция убывает на .
№ 7.Опр. Отношение катета прямоугольного треугольника, прилежащего к острому углу, к гипотенузе называется косинусом этого угла (обозначается cos )
  1. область определения - множество всех действительных чисел;
  2. множество значений - [-1; 1];
  3. функция четная: cos(-x) = cos(x) для всех ;
  4. функция периодическая с наименьшим положительным периодом ;
  5. cos(x) = 0 при ;
  6. cos(x) > 0 для всех ;
  7. cos(x) > 0 для всех ;
  8. функция возрастает на ;
  9. функция убывает на
№8.Опр. Отношение катета, противолежащего острому углу прямоугольного треугольника, к катету, прилежащему к этому углу, называется тангенсом (обозначается tg ).
  1. область определения - множество всех действительных чисел, кроме чисел вида;
  2. множество значений - вся числовая прямая;
  3. функция нечетная: tg(-x) = -tg(x) для всех х из области определения;
  4. функция периодическая с наименьшим положительным периодом ;
  5. tg(x) = 0 при х = ;
  6. tg(x) > 0 для всех ;
  7. tg(x) < 0 для всех ;
  8. функция возрастает на .
№9.Опр. Отношение катета, прилежащего острому углу прямоугольного треугольника, к катету, противолежащему к этому углу, называется котангенсом (обозначается ctg )
  1. область определения - множество всех действительных чисел, кроме чисел вида ;
  2. множество значений - вся числовая прямая;
  3. функция нечетная: ctg(-x) = -ctg(x) для всех х из области определения;
  4. функция периодическая с наименьшим положительным периодом ;
  5. ctg(x) = 0 при x = ;
  6. ctg(x) > 0 для всех ;
  7. ctg(x) < 0 для всех ;
  8. функция убывает на .
Ответ № 10
  1. Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией.
  2. Из определения арифметической прогрессии следует, что разность между любым ее членом и ему предшествующим равна одному и тому же числу, т. е. а2 - а 1 = а3 - а2 = ... = ak - ak-1 = ... . Это число называется разностью арифметической прогрессии и обычно обозначается буквой d.
  3. Для того чтобы задать арифметическую прогрессию (аn), достаточно знать ее первый член а1 и разность d.
  4. Если разность арифметической прогрессии - положительное число, то такая прогрессия является возрастающей; если отрицательное число, то убывающей. Если разность арифметической прогрессии равна нулю, то все ее члены равны между собой и прогрессия является постоянной последовательностью.
  5. Характеристическое свойство арифметической прогрессии. Последовательность (аn) является арифметической прогрессией тогда и только тогда, когда любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, т. е. (1)
  6. Формула n-го члена арифметической прогрессии имеет вид: an = a1 + d(n-1). (2)
  7. Формула суммы n первых членов арифметической прогрессии имеет вид: (3)
  8. Если в формулу (3) подставить вместо аn его выражение по формуле (2), то получим соотношение
  9. Из определения разности арифметической прогрессии следует, что a1 + an = a2 + an-1 = ..., т. е. сумма членов, равноудаленных от концов прогрессии, есть величина постоянная.
Ответ № 11
  1. Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же не равное нулю число, называется геометрической прогрессией.
  2. Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2:b1 = b3 :b2 = ... = bn:bn-1 = bn+1:bn = ... . Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q.
  3. Для того, чтобы задать геометрическую прогрессию (bn), достаточно знать ее первый член b 1 и знаменатель q.
  4. Если q > 0 (), то прогрессия является монотонной последовательностью. Пусть, например, b 1= -2, q = 3, тогда геометрическая прогрессия -2, -6, -18, ... есть монотонно убывающая последовательность. Если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.
  5. Характеристическое свойство геометрической прогрессии. Последовательность (bn ) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е. (1)
  6. Формула n-го члена геометрической прогрессии имеет вид: (2)
  7. Формула суммы п первых членов геометрической прогрессии имеет вид: , (3)
  8. Если в формулу (3) подставить вместо bn его выражение по формуле (2), то получится соот-ношение. , (4)
  9. Из определения знаменателя геометрической прогрессии следует, что b1 bn = b2bn-1 = ., т.е. произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.
Сумма бесконечной геометрической прогресси при
  1. Пусть (xn) - геометрическая прогрессия со знаменателем q, где и . Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию , называется предел суммы n первых ее членов при .
  2. Обозначим сумму бесконечной геометрической прогрессии через S. Тогда верна формула .
№ 12 Решение тригонометрических уравнений вида sin(x) = a
  1. формула для корней уравнения sin(x) = a, где , имеет вид: Частные случаи:
  2. sin(x) = 0, x =
  3. sin(x) = 1, x =
  4. sin(x) = -1, x =
  5. формула для корней уравнения sin2(x) = a, где , имеет вид: x=
Решение тригонометрических неравенств вида sin(x) > a, sin(x) < a
  1. Неравенства, содержащие переменную только под знаком тригонометрической функции, называются тригонометрическими.
  2. При решении тригонометрических неравенств используют свойство монотонности триго-нометрических функций, а также промежутки их знакопостоянства.
  3. Для решения простейших тригонометрических неравенств вида sin(x) > a (sin(x) < а) используют единичную окружность или график функции y = sin(x). sin(x) = 0 если х = ; sin(x) = -1, если x = >; sin(x) > 0, если ; sin(x) < 0, если .
Ответ № 13 Решение тригонометрического уравнения cos(x) = a
  1. Формула для корней уравнения cos(x) = a, где , имеет вид: .
  2. Частные случаи: cos(x) = 1, x = ; cos(x) = 0, ; cos(x) = -1, x =
  3. Формула для корней уравнения cos2(x) = a, где , имеет вид: .
Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a
  1. Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x);
  2. Важным моментом является знание, что: cos(x) = 0, если ; cos(x) = -1, если x = ; cos(x) = 1, если x = ; cos(x) > 0, если ; cos(x) > 0, если .
№ 14 Решение тригонометрического уравнения tg(x) = a
  1. Формула для корней уравнения tg(x) = a имеет вид: .
  2. Частные случаи: tg(x) = 0, x = ; tg(x) = 1, ; tg(x) = -1, .
  3. Формула для корней уравнения tg2(x) = a, где , имеет вид:
Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a
  1. Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x).
  2. Важно знать, что: tg(x) > 0, если ; tg(x) < 0, если ; Тангенс не существует, если .
№ 15
  1. Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов , , , , выражаются через значения sin , cos , tg и ctg .
  2. Все формулы приведения можно свести в следующую таблицу:

Функция

Аргумент

sin

cos

cos

sin

-sin

-cos

-cos

-sin

sin

cos

sin

-sin

-cos

-cos

-sin

sin

cos

cos

tg

ctg

-ctg

-tg

tg

ctg

-ctg

-tg

tg

ctg

tg

-tg

-ctg

ctg

tg

-tg

-ctg

ctg

  1. Для облегчения запоминания приведенных формул нужно использовать следующие правила: a) при переходе от функций углов , к функциям угла название функции изменяют: синус на косинус, тангенс на котангенс и наоборот; при переходе от функций углов , к функциям угла название функции сохраняют; б) считая острым углом (т. е. ), перед функцией угла ставят такой знак, какой имеет приводимая функ-ция углов , , .
Все вышеприведенные формулы можно получить, пользуясь следующим правилом: Любая тригонометрическая функция угла 90°n + по абсолютной величине равна той же функции угла , если число n - четное, и дополнительной функции, если число n - нечетное. При этом, если функция угла 90°n + . положительна, когда - острый угол, то знаки обеих функций одинаковы, если отрицательна, то различны. № 16
  1. Формулы косинуса суммы и разности двух аргументов: Рис.1 Рис.2 Повернем радиус ОА, равный R, около точки О на угол и на угол (рис.1). Получим радиусы ОВ и ОС. Найдем скалярное произведение векторов и . Пусть координаты точки В равны х1 и y1, координаты точки С равны х 2 и y2. Эти же координаты имеют соответственно и векторы и . По определению скалярного произведения векторов: = х1х2 + y1y2. (1) Выразим скалярное произведение через тригонометрические функции углов и . Из определения косинуса и синуса следует, что х1 = R cos , y1 = R sin , х2 = R cos , y2 = R sin . Подставив значения х1, х2, y1, y2 в правую часть равенства (1), получим: = R2cos cos + R2sin sin = R2(cos cos + sin sin). С другой стороны, по теореме о скалярном произведении векторовимеем: = cos BOC = R2cos BOC. Угол ВОС между векторами и может быть равен - (рис.1), - ( - ) (рис.2) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos BOC = cos ( - ). Поэтому = R2 cos ( - ). Т.к. равно также R2(cos cos + sin sin), то cos( - ) = cos cos + sin sin. cos( + ) = cos( - (-)) = cos cos(-) + sin sin(-) = cos cos - sin sin. Значит, cos( + ) = cos cos - sin sin .
  2. Формулы синуса суммы и разности двух аргументов: sin( + ) = cos( /2 - ( + )) = cos(( /2 - ) - ) = cos( /2 - ) cos + sin( /2 - ) sin = sin cos + cos sin . Значит, sin( + ) = sin cos + cos sin. sin( - ) = sin( + (-)) = sin cos(-) + cos sin(-) = sin cos - cos sin. Значит, sin( - ) = sin cos - cos sin.
№ 17 Формулы двойных углов Формулы сложения позволяют выразить sin 2 , cos 2, tg 2 , ctg 2 через тригонометрические функции угла . Положим в формулах sin( + ) = sin cos + cos sin , cos( + ) = cos cos - sin sin , , . равным . Получим тождества: sin 2 = 2 sin cos ; cos 2 = cos2 - sin2 = 1 - sin2 = 2 cos2 - 1; ; . № 18 Формулы половинного аргумента
  1. Выразив правую часть формулы cos 2 = cos2 - sin 2 через одну тригонометрическую функцию (синус или косинус), придем к соотношениям cos 2 = 1 - sin2 , cos 2 = 2 cos2 - 1. Если в данных соотношениях положить = /2, то получим: cos = 1 - 2 sin2 /2, cos 2 = 2 cos2 /2 - 1. (1)
  2. Из формул (1) следует, что (2), (3).
  3. Разделив почленно равенство (2) на равенство (3), получим (4).
  4. В формулах (2), (3) и (4) знак перед радикалом зависит от того, в какой координатной четверти находится угол /2.
  5. Полезно знать следующую формулу: .
№ 19 Формулы суммы и разности синусов, косинусов Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения. Чтобы представить в виде произведения сумму sin + sin , положим = x + y и = x - y и воспользуемся формулами синуса суммы и синуса разности. Получим: sin + sin = sin (x + y) + sin (x - y) = sinx cosy + cosx siny + sinx cosy - cosx siny = 2sinx cosy. Решив теперь систему уравнений = x + y, = x - y относительно x и y, получим х = , y = . Следовательно, sin + sin = 2 sin cos . Аналогичным образом выводят формулы: sin -sin = 2 cos sin ; cos + cos = 2 cos cos ; cos + cos = -2 sin sin . № 20 Чтобы найти решение приведенного квадратного уравнения x2 + p x + q = 0, где , достаточно перенести свободный член в правую часть и к обеем частям равенства прибавить . Тогда левая часть станет полным квадратом, и мы получаем равносильное уравнение = - q . Оно отличается от простейшего уравнения x2 = m только внешним видом: стоит вместо x и - q - вместо m . Находим = . Отсюба х = - . Эта формула показывает, что всякое квадратное уравнение имеет два корня. Но эти корни могут быть и мнимыми, если < q . Может также оказаться, что оба корня квадратного уравнения равны между собой, если = q . Возращаемся к обычному виду . 1. Сумма корней приведенного квадратного уравнения x2 + px + q = 0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену, т.е. х1 + х2 = -р, а х1х2 = q . 2. Теорема, обратная теореме Виета. Если р, q, х1, х 2 таковы, что х1 + х2 = -р и х1х 2 = q , то х1 и х2 - корни уравнения x2 + px + q = 0. № 21 Опр. Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести основание а, чтобыполучить число b. Формулу (где b > 0, a > 0 и a 1) называют основным логарифмическим тождеством. Свойства логарифмов:
  1. ;
  2. ;
  3. Логарифм произведения равен сумме логарифмов сомножителей: . Для доказательства воспользуемся основным логарифмическим тождеством: x = , y = . Перемножим почленно эти равенства, получаем: xy = = . Следовательно, по определению логарифма (п.3) доказан.
  4. Логарифм частного равен логарифму делимого без логарифма делителя: . Ход доказательства аналогичен доказательству п.3
  5. Логарифм степени равен произведению показателя степени на логарифм ее основания: . При доказательстве, также необходимо воспользоваться основным логарифмическим тождеством.
№ 22
  1. Производной функции f(x) в точке х0 называется предел отношения приращения функции в точке х0 к приращению аргумента, когда последнее стремится к нулю. Это можно записать так: .
  2. Из определения производной следует, что функция может иметь производную в точке х0 только в том случае, если она определена в некоторой окрестности точки х0, включая эту точку.
  3. Необходимым условием существования производной функции в данной точке является непрерывность функции в этой точке.
  4. Существование производной функции f в точке х0 эквивалентно существованию (невертикальной) касательной в точке (х0 ; f(х0)) графика, при этом угловой коэффициент касательной равен . В этом состоит геометрический смысл производной.
  5. Механический смысл производной f '(x) функции у = f(x) - это скорость изменения функции в точке х. Поэтому при решении прикладных задач следует помнить, что какой бы процесс ни описывался изучаемой функцией у = f(x) производную с физической точки зрения можно представить как скорость, с которой протекает процесс.
№ 23
  1. Производная суммы равна сумме производных, если они существуют: .
  2. Если функция u и v дифференцируемы в точке х0 то их производные дифференцируемы в этой точке и .
  3. Если функция u и v дифференцируемы в точке х0, а С - постоянная, то функция Cu дифференцируема в этой точке и .
  4. Если функция u и v дифференцируемы в точке х0 и функция v не равна нулю в этой точке, то частное двух функций тоже дифференцируемо в точке х0 и .