Каталог :: Менеджмент

Лекция: ХАССП критические контрольные точки

                 Источники загрязнений пищевых продуктов.                 
Потенциально опасные для здоровья человека химические и биологические
вещества попадают и накапливаются в пищевых продуктах по ходу как
биологической цепи (обеспечивающей обмен веществ между живыми организмами, с
одной стороны, и воздухом, водой и почвой – с другой), так и пищевой цепи,
включающей все этапы сельскохозяйственного производства продовольственного
сырья и пищевых продуктов, а также хранение, упаковку и маркировку, что
отражено на рисунке 1. Конкретные источники загрязнений пищевых продуктов
приведены в таблице.
     

Источники загрязнения пищевых продуктов чужеродными веществами

Тип загрязнений

Вид продукта

Характер контаминации

Контаминант(ы)

1234
АнтропогенныйРастительныеПрямое осаждение на листьях, плодах и других открытых частях растенийПестициды, инсектициды, фунгициды, гербициды
РастительныеВсасывание через корневую систему из загрязнений почвыСоли кадмия, свинца, цинка, компоненты минеральных удобрений, в частности нитраты
Животные (водные организмы, рыбы)Аккумуляция в тканях моллюсков и рыб загрязнений из сточных вод промышленных предприятийОрганические соединений ртути; хлорорганические соединения

Животные

Аккумуляция в тканях животных препаратов, используемых для стимуляции их роста и леченияГормоны, гормоноподобные вещества, антибиотики

Животные

Образование или накопление в процессе технологической или кулинарной обработкиПолициклические ароматические углеводороды, N-нитрозоамины, фенолы, олово, свинец
Растительные и животныеСпециальное внесение в конечный пищевой продукт с целью улучшения его качества, удлинения сроков хранения и т.д.Пищевые добавки, красители, консерванты, антиокислители, эмульгаторы, ароматизаторы и др.
ЕстественныйЖивотные и растительныеБактериальная обсемененность и размножение бактерий в благоприятных условиях как с образованием токсинов, так и без них

B. cereus, токсины, Cl. botulinum, сальмонеллы, стафилококковые энтеротоксины и др.

ЖивотныеАккумуляция в тканях и молоке при употреблении контаминированных кормовМикотоксины: афлатоксины, охратоксины

Животные

Поражение паразитамиПаразиты
Мониторинг загрязнений пищевых продуктов за 1987-1993 гг. Позволил определить перечень приоритетных загрязнителей пищевых продуктов в России.

Загрязнители различных пищевых продуктов в России

Группы пищевых продуктовЗагрязнители
Мясо и мясопродуктыТоксичный элементы, антибиотики, гормональные препараты, нитриты, нитрозоамины, полихлорированные дибензодиоксины и дибензофураны
Молоко и молочные продуктыТоксичные элементы, антибиотики, пестициды, афлатоксины, полихлорированные дибензодиоксины и дибензофураны, полихлорбифенол
Рыба и рыбопродуктыТоксичные элементы, нитрозоамины, полихлорированные дибензодиоксины и дибензофураны, полихлорбифенол, гистамин
Зерно и зернопродуктыПестициды, микотоксины (афлатоксин В1, вомитоксин, Т-2 токсин, зеараленон)
Овощи, фруктыНитраты, пестициды, патулин

Контаминанты пищевых продуктов

Пищевые продукты представляют собой сложные многокомпонентные системы, состоящие из сотен химических соединений. Все химические вещества пищи с определенной степенью условности могут быть разделены, во-первых, на собственно компоненты пищевых продуктов, то есть вещества, специфические для определенного вида продуктов растительного и животного происхождения; во- вторых, на пищевые добавки- вещества, специально вносимые в пищевые продукты для достижения определенного технологического эффекта и, в-третьих, на контаминанты из окружающей среды. Чужеродные вещества пищи подразделяют на пищевые добавки и контаминанты. Пищевые добавки - химические вещества природного или синтетического происхождения, специально добавляемые в пищевые продукты на различных этапах его производства, хранения или транспортирования с целью достижения желаемого эффекта. Несомненно, что наибольшую опасность для здоровья человека представляют контаминанты пищевых продуктов, поступающие их окружающей среды – контаминанты как естественного, так и антропогенного происхождения. По данным зарубежных исследователей, из общего количества чужеродных химических веществ, проникающих из окружающей среды в организм человека, в зависимости от условий проживания, 30.80 % поступает с пищей. Наибольшую опасность с точки зрения распространенности и токсичности имеют следующие контаминанты: · токсические элементы; · нитраты, нитриты, нитрозоамины; · гистамин; · пестициды; · антибиотики; · радионуклиды; · полициклические ароматические углеводороды (ПАУ); · диоксины и диоксиноподобные соединения; · бактерии и бактериальные токсины; · микотоксины. В науке о безопасности питания базисным регламентом являются предельно допустимая концентрация (ПДК), допустимое суточное потребление (ДСП) и допустимая суточная доза (ДСД). ПДК загрязняющих веществ в продуктах питания – установленное законом предельно допустимое с точки зрения здоровья человека количество вредного вещества. Токсичность – способность химических веществ вызывать нарушения жизнедеятельности организма – отравление. Токсическое действие загрязнителей различных групп отличается по критериям риска: тяжести, частоте встречаемости и времени наступления поражения. Контаминанты пищевых продуктов химического происхождения Токсичные металлы. По вопросу металлических загрязнений существует несколько течек зрения. Согласно одной их них, все металлы периодической системы делят на группы: -металлы, как незаменимые факторы питания (эссенциальные макро- и микроэлементы); -неэссенциальные или необязательные для жизнедеятельности металлы; токсичные металлы. Согласно другой точке зрения, все металлы необходимы для жизнедеятельности, но в определенных количествах. По воздействию на организм человека выработана следующая классификация микроэлементов: -микроэлементы, имеющие значение в питании человека и животных (Co, Cr, Ce, F, Fe, I, Mo, Mn, Ni, Se, Si, V, Zn); -микроэлементы, имеющие токсикологическое значение (As, Be, Cd, Co, Cr, F, Hg, Mn, Mo, Ni, Pb, Pd, Se, Sn, Ti, V, Zn). При этом следует лтметить, что 10 их перечисленных элементов отнесены в обе группы. Биологически эссенциальные металлы имеют пределы доз, определяющие их дефицит, оптимальный уровень и уровень токсического действия. Токсические металлы на этой же шкале в низких дозах не оказывают вредного действия и не несут биологических функций. Однако в высоких дозах они оказывают токсическое действие. Таким образом не всегда можно установить различие между жизненно необходимыми и токсичными металлами. Все металлы могут проявить токсичность, если они потребляются в избыточном количестве. Кроме того, токсичность металлов проявляется в их взаимодействии друг с другом. Тем не менее, существуют металлы, которые проявляют сильно выраженные токсикологические свойства при самых низких концентрациях и не выполняют кокой либо полезной функции. К таким токсичным металлам относят ртуть, кадмий, свинец, мышьяк. Ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо Объединенная комиссия ФАО и ВОЗ по пищевому кодексу (Codex Alimehtarius) включила в число компонентов, содержание которых контролируется при международной торговле продуктами питания. В России и СНГ подлежат контролю еще 7 элементов (сурьма, никель, хром, алюминий, фтор, йод, олово), а при наличии показаний могут контролироваться и некоторые другие металлы. В России гигиеническими требованиями определены критерии безопасности для следующих токсических веществ: свинец, мышьяк, кадмий. Ртуть, медь, цинк, железо, олово (для консервов в сборной жестяной таре), хром (для консервов в хромированной таре). Свинец относится к наиболее известным ядам и среди современных токсикантов играет весьма заметную роль. Свинец находится в микроколичествах почти повсеместно. В почвах обычно содержится от 2 до 200 мг/кг свинца. Свинец, как правило сопутствует другим металлам, чаще всего цинку, железу, кадмию и серебру. В наше время в роли токсикантов окружающей среды выступают прежде всего алкильные соединения свинца, такие как тетраэтилсвинец. В радиусе нескольких километров от свинцеперерабатывающих предприятий концентрация этого металла в некоторых овощах и фруктах варьируется в пределах (мг/кг): в помидорах – 0,6...1,2, в огурцах – 0,7...1,1, в перце – 1,5...4.5, в картофеле – 0,7...1,5. При обработке продуктов основным источником поступления свинца является жестяная банка, которая используется для упаковки от 10 до 15 % пищевых изделий. Свинец токсически действует на 4 системы органов: кроветворную, нервную, желудочно-кишечную и почечную. Экспертами ФАО и ВОЗ установлена величина ПДК (допустимая суточная доза) свинца для взрослого человека, которая составляет 0,007 мг/кг массы тела, а ПДК (предельно допустимая концентрация) в питьевой воде – 0,05 мг/л. Мышьяк. Природный мышьяк находится в элементном состоянии, в виде арсенидов и арсеносульфидов тяжелых металлов. Содержится во всех объектах биосферы: в морской воде – около 5 мкг/кг, в земной коре – 2 мг/кг, рыбах и ракообразных – в наибольших количествах. Мышьяк в зависимости от дозы, может вызвать острое и хроническое отравление. Хроническая интоксикация возникает при длительном употреблении питьевой воды с 0,3...2.2 мг/л мышьяка. Разовая доза мышьяка в 30 мг смертельна для человека. Допустимая суточная доза мышьяка – 0,05 мг/кг массы тела, что для взрослого человека составляет около 3 мг/сут. Кадмий. Кадмий представляет собой один из самых опасных токсикантов из внешней среды. В природной среде кадмий встречается в очень малых количествах, именно поэтому его отравляющее действие было выявлено лишь недавно. В последние 30 – 40 лет он все больше применяется в промышленности. Кадмий опасен в любой форме – принятая внутрь доза в 30 – 40 мг уже может оказаться смертельной. Поглощенное количество кадмия выводится из организма очень медленно (0,1 % в сутки), легко может происходить хроническое отравление. В организме кадмий в первую очередь накапливается в почках. Кадмий почти невозможно изъять из природной среды, поэтому он все больше накапливается в ней и попадает различными путями в пищевые цепи человека и животных. Больше всего кадмия мы получаем с растительной пищей. Эксперты ФАО полагают, что взрослый человек с рационом получает 30...150 мкг кадмия в сутки. Допустимая суточная доза кадмия составляет 1 мкг/кг массы тела. Ртуть. Один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в организме растений, животных и человека. В пищевых продуктах ртуть может присутствовать в 3-х видах: атомарная ртуть, окисленная ртуть и алкилртуть – соединения ртути с алкилирующими соединениями. Токсичность ртути зависит от вида ее соединений, которые по разному всасываются, метаболизируются и выводятся из организма. С токсикологической точки зрения ртуть наиболее опасна, когда она присоединена к углеродному атому метиловой, этиловой или пропиловой группы – это алкильные соединения с короткой цепью. Процесс метилирования ртути является ключевым звеном ее биокумуляции по пищевым цепям водных экосистем. Механизм токсического действия ртути связывают с ее взаимодействием с белками. Ртуть изменяет свойства белков или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические – обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Ртуть, проникнув в клетку, может включиться в структуру ДНК, что сказывается на наследственности человека. Фоновое содержание ртути в съедобных частях сельскохозяйственных растений составляет от 2 до 20 мкг/кг, редко до 50-200 мкг/кг. Среднее содержание в овощах – 3-59, фруктах – 10-124, бобовых – 8-16, зерновых – 10-103 мкг/кг. Фоновое содержание в продуктах животноводства составляет, мкг/кг: мясо – 6- 20, печень – 20-35, молоко – 2-12, коровье масло – 2-5, яйца – 2-15. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку аккумулирует ее из воды и корма, в который входят другие гидробионты, богатые ртутью. Например, в мясе хишных пресноводных рыб уровень ртути составляет 107 –509, океанских – 300 – 600 мкг/кг. Допустимый уровень содержания ртути для рыбы (в зависимости от вида) – до 0,7 мкг/кг. Допустимое недельное поступление не должно превышать 0,3 мг на человека, в том числе метилртути не более 0,2 мг, что эквивалентно 0,005 мг/кг и 0,003 мг/кг массы тела за неделю. В питьевой воде до 0,001 мг/л, а для других прочих продуктов – около 0,05 мг. Медь. Медь присутствует почти во всех пищевых продуктах. Суточная потребность взрослого человека в меди 2,0 – 2,5 мг, то есть 35 – 40 мкг/ кг массы тела, для детей – 80 мкг/ кг массы тела. Однако при нормальном содержании в пище молибдена и цинка – физиологических антагонистов меди – по оценке экспертов ФАО, суточное потребление меди может составлять не более 0,5 мкг/кг массы тела. В организме человека присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. Цинк. Цинк присутствует во многих пищевых продуктах и напитках, особенно в продуктах растительного происхождения. Суточная потребность в цинке взрослого человека составляет 15 мг. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо – 20-40, рыбопродукты – 15-30, устрицы – 60-1000, яйца – 15-20, фрукты и овощи – 5, зерновые – 25-30, молоко – 2-6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13 – 25 мг. Цинк и его соединения малотоксичны. Однако избыток цинка вызывает токсическое действие на организм. Токсические дозы солей цинка действуют на желудочно-кишечный тракт. ПДК цинка в питьевой воде – 5 мг/л, для водоемов рыбохозяйственного значения – 0,01 мг/л. Олово. Пищевые продукты содержат этот элемент до 1 – 2 мг/кг. Неорганические соединения олова малотоксичны, органические – более токсичны, находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги. Опасность отравления оловом увеличивается при постоянном присутствии его спутника – свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Высокая концентрация олова в пище может привести к острому отравлению. Показано, что для человека токсичная доза олова составляет 5 – 7 мг/кг массы тела. Отравление оловом может вызвать признаки острого гастрита, оно отрицательно влияет на активность пищеварительных ферментов.

Нитраты, нитриты и нитрозосоединения

Нитраты и нитриты широко распространены в окружающей среде, главным образом в почве и воде. Наряду с нитратами в почве содержится другой минеральный источник азота – аммоний. Он адсорбируется почвой и нитрифицируется. Нитраты быстро и легко реагируют с другими компонентами почвы. Нитритов в растениях содержится небольшое количество, в среднем – 0,2 мг/кг, поскольку они представляют собой промежуточную форму восстановления окисленных форм азота в аммиак. В больших количествах нитраты опасны для здоровья человека. Человек относительно легко переносит дозу в 150.200 мг нитратов в сутки, 500 мг считается предельно допустимой дозой, а 600 мг в сутки – доза, токсичная для взрослого человека. Для грудных детей токсичной является доза 10 мг в сутки. Министерством здравоохранения России утверждена суточная допустимая доза нитратов – 5 мг на 1 кг массы тела человека (300.350 мг нитратов ежедневно). Поступление такого количества нитратов не вызывает никаких изменений ни у человека, ни у его потомков. Эта доза нитратов соответствует рекомендациям Всемирной организации здравоохранения. Основным источником нитратов в сырье и продуктах питания служат азотсодержащие соединения и нитратные пищевые добавки, вводимые в мясные изделия для улучшения их органолептических показателей и подавления размножения некоторых патогенных микроорганизмов. Для увеличения урожайности растительной продукции агрохимическая технология часто нарушается – в почву вносят повышенное количество азотсодержащих удобрений. Это приводит к увеличению содержания нитратов в растительном сырье и продуктах. В молодых растениях нитратов на 50-70 % больше, чем в зрелых. Их содержание возрастает ближе к корню. Повышенное содержание нитратов в растениях может быть обусловлено и рядом других факторов, влияющих на метаболизм азотсодержащих соединений. Такими факторами являются соотношение различных питательных веществ в почве, освещенность, температура, влажность и др. Большая освещенность и наличие большого количества солнечного света способствуют ассимиляции азота из почвы, что в конечном итоге обусловливает снижение содержания нитратов в растениях. Также действует и повышение температуры и влажность воздуха, способствуя увеличению активности нитратредукетазы, что ведет к снижению содержания нитратов в плодах и овощах. На концентрацию нитратов в растениях оказывают влияние и сроки уборки урожая. Так, увеличение продолжительности вегетации в весенний период положительно сказывается на снижении содержания нитратов в овощах. Содержание нитратов в пищевых продуктах может возрастать по мере их хранения. Это связано с развитием микрофлоры, способной восстанавливать нитраты. Потенциальная токсичность нитратов, содержащихся в повышенной концентрации в пищевом сырье и продуктах питания, заключается в том, что они при определенных условиях могут окисляться до нитритов, которые обуславливают серьезное нарушение здоровья не только детей, но и взрослых. Токсическое действие нитритов в человеческом организме проявляется в форме метгемоглобинемии. Она является следствием окисления двухвалентного железа гемоглобина в трехвалентное. В результате такого окисления гемоглобин превращается в NO-метгемоглобин, который не способен связывать и переносить кислород. Тяжелая форма заболевания проявляется при содержании в крови более 40 % метгемоглобина. Установлено, что нитраты могут угнетать активность иммунной системы организма, снижать устойчивость организма к отрицательному воздействию факторов окружающей среды. Нормирование нитратов, нитритов как пищевых добавок осуществляется в связи с их использованием в производстве некоторых продуктов питания. Содержание нитритов в пищевых продуктах допускается до 50 мг/кг, солонине из говядины и баранины – до 200 мг/кг, в экспортируемых – до 30 мг/кг. Основным источником поступления нитратов в организм человека являются продукты растительного происхождения, в частности овощи (82 –92%). Основные поставщики нитритов – мясные продукты, на долю которых приходится 53-60 % от общего поступления нитритов в организм человека. В каждой стране установлены предельно-допустимые концентрации нитратов. Большое внимание уделяют нитритам и нитратам еще и потому, что они превращаются в организме в конечном итоге в нитрозосоединения, многие из которых являются канцерогенными. Так, из известных в настоящее время нитрозосоединений 80 нитрозоаминов и 23 нитрозоамида являются активными канцерогенами. Нитрозосоединения могут образовываться в результате технологической обработки сельскохозяйственного сырья и полуфабрикатов, варки, жарения, соления, длительного хранения. При этом, чем интенсивнее термическая обработка и длительнее хранение пищевых продуктов, тем больше вероятность образования в них нитрозосоединений. В свежих продуктах нитрозосоединения содержатся в незначительных количествах, за исключением тех случаев, когда эти продукты изготовлены с нарушением технологических режимов и из сырья с высоким исходным уровнем предшественников реакций нитрозирования. Существует много типов нитрозосоединений и механизмы их действия на живой организм различны. По-видимому, они вызывают необратимые изменения ДНК. Приоритетными продуктами, характеризующимися наибольшей частотой и уровнем содержания нитрозосоединений, являются рыбные и мясные копченые изделия и пивоваренный солод. Для этих и некоторый других пищевых продуктов гигиеническими требованиями установлены допустимые уровни содержания нитрозосоединений.

Гистамин

Гистамин (β-имидазолэтиламин или 2-аминоэтилимидазол) является широко распространенным биогенным амином, повышенное накопление которого в некоторых продуктах питания при определенных условиях может служить причиной пищевых отравлений. Гистамин является естественной составной частью продуктов питания, так как в процессе жизнедеятельности он образуется в различных тканях животных. Естественное содержание гистамина невелико и не оказывает неблагоприятного воздействия на организм. Гистамин образуется в продуктах в результате декарбоксилирования аминокислоты гистидина при участии ферментов микрофлоры, развивающейся при нарушении условий хранения. Среди микробов, ответственных за процесс декарбоксилирования гистидина отмечают представителей семейства Enterobakteriacea (Echerichia Enterobacter, Schigella, Salmonella) и некоторые виды, принадлежащие к Pseudomonas, Streptococcus, Lactobacillus, Clostridium. Накопление гистамина в рыбе может происходить в период от вылова до замораживания, особенно, если она в этот период хранится без охлаждения. Возможно накопление гистамина в рыбе при нарушении условий холодильного хранения и несоблюдении технологии оттаивания и сроков хранения перед термообработкой. В этих случаях в мышечной ткани некоторых видов рыб, особенно тунцов, скумбрий и некоторых других может происходить накопление гистамина до токсичных уровней. В подавляющем большинстве случаев зарегистрированные вспышки гистаминовых отравлений были обусловлены употреблением рыбы из семейства скумбриевых, содержащей большое количество гистамина, и продуктов ее переработки. Доза переносимости гистамина для взрослого человека составляет 5 –6 мг/кг массы тела. Токсическая доза находится в пределах более 100-1000 мг/кг продукта и высокотоксичная - свыше 1 г/кг. Предельно допустимая концентрация гистамина в рыбопродуктах установлена на уровне 100 мг/кг с учетом практики международного законодательства. В случае обнаружения гистамина в рыбе, содержание которого превышает ПДК, ее следует направлять на рыбоперерабатывающие предприятия для изготовления рыбопродукции, где по технологии предусматривается разбавление (фаршевые изделия) или подсортировка с другими видами рыб (консервы). При этом среднее содержание гистамина в продуктах, поступающих для питания не должно быть более 100 мг/кг массы рыбы. Пестициды Период бурного развития химии ознаменовался внедрением в практику химического метода защиты растений. Появились многочисленные и разнообразные вещества химического синтеза, так называемые пестициды, которые постепенно заняли главенствующее место в защите растений и животных от вредителей, болезней и сорняков. Пестициды – общее наименование всех химических соединений, которые применяются в сельском хозяйстве для защиты культурных растений от вредителей и паразитов (англ.:pest –паразиты, cide – уничтожать), сорных растений, микроорганизмов, и вызываемых ими болезней. Пестициды различают в зависимости от цели и направления их использования: -инсектициды – уничтожают насекомых; -родентициды – уничтожают грызунов; -фунгициды – уничтожают грибы; -гербициды – против сорных растений; -бактерициды – против бактерий; -акарициды – против клещей. Особую группу составляют дефолианты – средства для удаления листьев и ботвы, ретарданты – препараты для укорачивания соломы и регуляторы роста растений. Опасность пестицидов для человека определяют рядом критериев, характеризующих возможность поступления в организм и способность оказывать неблагоприятное действие. К критериям опасности относят их устойчивость в окружающей среде, стойкость к химическим, физическим и прочим фактором при технологической и кулинарной обработке пищевого сельскохозяйственного сырья и продуктов питания. Критериями токсичности пестицидов являются величины токсических смертельных доз при разных путях поступления в организм – через кожу, легкие или желудочно-кишечный тракт. Однако многие вещества, будучи малотоксичными, опасны в связи с возможностью мутагенного, тератогенного, и канцерогенного действия при влиянии на организм в небольших количествах, близких к реально встречающимся. Применение пестицидов ставит три основные проблемы. Первая из них связана с тем, что определенные пестициды, например ДДТ и ртутьорганические соединения, имеют тенденцию накапливаться в живых организмах. В некоторых случаях пестицидах не только накапливаются в организме в количестве большем, чем в окружающей среде, но их концентрация возрастает по мере продвижения по пищевым цепям. Это явление называют эффектом биологического усиления. ДДТ служит примером биологически усиливающегося пестицида. Когда в организм животного попадает ДДТ – с водой, с остатками уже обработанных растений или насекомыми, которые питались такими растениями, он концентрируется в жировых тканях, так как ДДТ растворим в жирах. Из жировых тканей ДДТ выводится очень медленно. Если какой-то другой организм в пищевой цепи поедает первый, то он в этом случае поглощает уже более концентрированную дозу ДДТ. Взрослый житель Германии в среднем содержит в своем организме 4 мг ДДТ на 1 кг жира, житель США – примерно в 2,5 раза больше. Поскольку ДДТ жирорастворим, он накапливается прежде всего в жировой ткани и органах, где присутствуют жироподобные вещества, то есть в печени, сердце и нервной системе. Хлорированные углеводороды, такие, как ДДТ, и пестициды, содержащие мышьяк, свиней или ртуть, относятся к группе устойчивых, они не разрушаются за время одного вегетационного сезона под действием солнца или бактерий, что свидетельствует о продолжительности сохранения пестицидов в почве или на культурных растениях после обработки. Период полужизни у ДДТ, например, может длиться до 20 лет – через 20 лет только половина первоначально использованного ДДТ разложится до простых соединений. Широкий спектр воздействия и устойчивость ДДТ оказались впоследствии коварными сторонами этого вещества. Устойчивость ДДТ способствовала его накоплению в пищевых цепях, что оказало губительное действие на их концевых звенья. Когда в США концентрация ДДТ в молоке кормящих матерей в результате передачи этого вещества через пищевые цепи достигла уровня в 4 раза выше предельно допустимого, применение ДДТ было запрещено. Далее ДДТ был запрещен в Новой Зеландии, СССР, Венгрии, Швеции, Дании, Финляндии и других странах. Экспериментально были установлено, что ДДТ может вызывать генетические изменения в человеческом организме. Другие компоненты пестицидов – ртуть и мышьяк полностью не разрушаются практически никогда: они циркулируют в экосистеме или оказываются захороненными в иле Неодинаковая химическая стойкость различных пестицидов предопределяет как уровень их остаточных количеств в объекте биосферы, так и динамику их миграции в биологической пищевой цепи. Поступление с пищей предельно допустимых остаточных количеств пестицидов, как правило, не приводит к острым отравлениям. Оно проявляет себя растянутым во времени хроническим действием со слабо выраженными признаками, либо практически никак не проявляет. Непосредственный контакт с пестицидными препаратами, потребление продукции в высоким их содержанием могут стать причиной острых отравлений и даже гибели людей. По данным ООН, ежегодно почти у 1 млн человек регистрируют отравления пестицидами, применяемыми при обработке сельскохозяйственных культур, из них около 40 тыс. человек погибают. При этом, следует отметить, что число острых отравлений, вызванных пестицидами, как правило, не превышает 10 % общего числа острых отравлений. Так же по данным ООН, из общего числа отравлений химическими средствами со смертельным исходом в мире на долю пестицидов приходится 2,6 %. Таким образом, пестициды казалось бы нельзя отнести к химическим средствам, представляющим ощутимую реальную опасность в повседневной жизни человека. В то же время, существует опасность косвенного (через миграционные, пищевые цепи) влияния пестицидов на здоровье человека и его наследственный аппарат, только токсиколого-гигиенические проблемы, с которыми сталкивается человек при применении пестицидов, носят хронический характер. Вторая - это способность вредителей становиться устойчивыми к пестицидам: пестициды перестают их убивать. Многие вредные насекомые в результате постоянного контакта с пестицидами приобретают или условно оборонительные рефлексы, или среди них формируются устойчивые к пестицидам популяции. Это происходит в результате мутаций, возникающих у некоторых особей среди бесчисленного потомства, появляющегося ежегодно. По данным ФАО в мире уже зарегистрировано около 450 видов вредных для растений насекомых, грызунов, нематод, у которых выработалась резистентность к различным химическим пестицидам, часто к нескольким. Приходится повышать концентрацию пестицидов, что в свою очередь, приводит к увеличению остаточных их количеств в продуктах питания. Кроме того, развитие устойчивости у насекомых поставило под угрозу успешное использование пестицидов для борьбы с насекомыми – переносчиками заболеваний. Например, комары стали невосприимчивы сначала к ДДТ, а потом к пропоксуру, который заменил ДДТ. Сейчас снова наблюдается рост числа заболеваний малярией. Третья проблема, связанная с использованием пестицидов, заключается в том, что после химического подавления вредителей они не только возвращаются но и могут появится в гораздо больших количествах, то есть возрождаться. Еще больше осложняет ситуацию неожиданное интенсивное размножение популяций насекомых, не вызывающих ранее беспокойства ввиду своей малочисленности. Это называется вторичными вспышками численности. В целом, для снижения остаточных количеств пестицидов в пищевом сырье и продуктах необходима тщательная кулинарная обработка и технологическая переработка сельскохозяйственной продукции. Антибиотики Антибиотики – специфические продукты жизнедеятельности или их модификации, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов (вирусам, актиномицетам, грибам, бактериям, водорослям или протоза) или злокачественным опухолям, избирательно задерживая их рост или полностью подавляя их развитие. Загрязнение пищевых продуктов антибиотическими веществами может произойти в результате: · лечебно – ветеринарных мероприятий сельскохозяйственных животных; · использование антибиотиков в кормопроизводстве; · применения антибиотиков в качестве консервирующих веществ при производстве пищевых продуктов. Роль антибиотиков в животноводстве особенно возросла при переходе к промышленной технологии выращивания скота и птицы. Изменение условий содержания животных по сравнению с выпасными, концентрация большого количества особей на небольших площадях, изменение структуры рациона животных – все это приводит к тому, что возникновение болезни лишь в небольшой части популяции может вызвать развитие эпизоотии. В этих условия х трудно переоценить ветеринарную роль антибиотиков для сохранения поголовья скота и птицы. В ветеринарии антибиотики используются для лечения таких заболеваний как: мастит, сибирская язва, пневмония и т.д. В кормопроизводстве антибиотики используют в качестве кормовых добавок, стимулирующих рост животных. Антибиотические вещества в небольших количествах положительно влияют на обмен веществ животных и птицы, улучшают использование корма, снижают в определенных условиях потребность в белке, повышают резистентность организма, что в конечном итоге способствует ускорению роста животных. Все производимые кормовые антибиотики должны отвечать следующим требованиям: -не использоваться в терапевтических целях и не вызывать перекрестной резистенции бактерий к антибиотикам, применяемым в медицине; -практически не всасываться в кровь из пищевого тракта; -не менять своей структуры в организме; -не обладать антигенной природой, способствующей возникновению аллергии. Введение антибиотиков сельскохозяйственным животным может привести к загрязнению пищевых продуктов животного происхождения. Контроль за остатками антибиотиков имеет большое гигиеническое значение. При употреблении продуктов питания, содержащих антибиотики, изменяется кишечная микрофлора, что приводит к нарушению синтеза витаминов и размножению патогенных микробов в кишечнике и возникновению аллергических заболеваний. Наиболее сильными аллергенами являются пенициллин и тилозин. В мясе, мясопродуктах, субпродуктах убойного скота и птицы контролируются как допущенные к применению в сельском хозяйстве кормовые антибиотики – гризин, бацитрацин, так и лечебные антибиотики, наиболее часто используемые в ветеринарии – антибиотики тетрациклиновой группы, стрептомицин, левомицетин. В молоке и молочных продуктах контролируются такие антибиотики как левомицетин, пенициллин, стрептомицин, антибиотики тетрациклиновой группы. Пенициллин относится к группе лактамных антибиотиков. Он оказывает антимикробное действие в отношении некоторых граммположительных бактерий (стафилококки, стрептококки и др.) и практически не активен в отношении граммотрицательных бактерий и дрожжей. По характеру действия на микроорганизмы пенициллин – бактериостатический, а в определенных концентрациях бактериоцидный антибиотик. Чувствительные к пенициллину микроорганизмы относительно легко и быстро приобретают устойчивость к антибиотику. У бактерий устойчивость к пенициллину сопровождается способностью образовывать фермент пенициллиназу. При применении антибиотиков пенициллиновой группы наблюдается частое проявление аллергических реакций. Стрептомицин относится к группе аминогликозидных антибиотиков, которая включает биологически активные соединения, содержащие в молекулах два или более аминосахара, которые связаны гликозидными связями с аминоциклитольным кольцом. Стрептомицин подавляет рост многих видов микроорганизмов. К стрептомицину довольно легко появляется устойчивость, возникают формы бактерий, резистентные к антибиотику. Токсичность стрептомицина сравнительно невелика. Для человека массой 60 кг токсическая доза этого антибиотика составляет около 6 г. Есть указания, что стрептомицин может оказывать определенное действие на эндокринную систему. В группу антибиотиков тетрациклинового ряда входят вещества, имеющие близкое химическое строение. Тетрациклиновые антибиотики обладают широким антибиотическим спектром в отношении граммположительных и граммотрицательных бактерий, а также риккетсий, некоторые из этих антибиотиков используются в животноводстве как стимуляторы роста сельскохозяйственных животных и птиц. Ценность тетрациклиновых антибиотиков определяется их высокой биологической активностью и относительно низкой токсичностью. Левомицетин (хлорамфеникол) относятся к группе ароматических антибиотиков. Левомицетин обладает широким антимикробным действием . Он подавляет развитие многих видов грамположительных и грамотрицательных бактерий, риккетсий, спирохет, хламидий и др. Некоторые микроорганизмы приобретают устойчивость к левомицетину, но резистентность развивается очень медленно. Сохранение скоропортящихся продуктов питания – одна из важнейших проблем пищевой и консервной промышленности. Различные методы сохранения продуктов консервирование, сквашивание, замораживание и охлаждение применялись человеком издавна. Эти методы широко применяются и теперь. Однако известно, что при кипячении, консервировании, сквашивании и в меньшей мере при охлаждении замораживании продуктов питания изменяются их ценные свойства и особенно аромат, структура, питательная ценность и др. Порча пищевых продуктов при хранении может вызываться развитием различных микроорганизмов: мицелиальные грибы, дрожжи, бактерии; действием ферментов и влиянием окислительных процессов, стимулируемых кислородом воздуха. Для борьбы с порчей пищевых продуктов используются различные физические и химические методы. Перспективным направлением является использование антибиотических веществ, которые в очень низких концентрациях обладают мощным биологическим действием, не проявляя токсичности в отношении животных и человека и препятствуя порче продуктов. В группу низинов входят пять форм антибиотиков – низины А, В, С, D, Е. Наиболее биологически активный вариант – низин А. Низин – продукт жизнедеятельности группы молочнокислых стрептококков, естественным местом обитания которых является молоко, сыр, кисломолочные напитки, творог, простокваша и др. Низин подавляет развитие ряда грамположительных и некоторых кислотоустойчивых бактерий, не оказывает влияния на грамотрицательные бактерии, дрожжи и плесневые грибы. Низин нашел применение в пищевой промышленности в качестве консерванта некоторых скоропортящихся продуктов. Его применяют при консервировании томатов, зеленого горошка, цветной капусты, мяса, рыбы, молока, сыров и других продуктов. Безопасность использования низина при производстве пищевых продуктов обусловлена тем, что, имея полипептидную структуру, он быстро разрушается в организме человека до аминокислот ферментами пищеварительного тракта. Благодаря этому исключается возможность накопления низина в организме человека и появления резистентных к нему форм микроорганизмов. Радионуклиды Опасность внутреннего облучения обусловлена попаданием и накоплением радионуклидов в организм через продукты питания. Биологические эффекты воздействия таких радиоактивных веществ аналогичны внешнему облучению. Наряду с испытаниями ядерного оружия, источниками загрязнения окружающей среды могут быть: добыча и переработка ториевых руд; получение уранового топлива; работа ядерных реакторов; переработка ядерного топлива с целью извлечения радионуклидов для нужд народного хозяйства; хранение и захоронения радиоактивных отходов. Растения, используемые человеком и животными в пищу, по степени накопления радиоактивных веществ располагаются в следующем порядке: табак (листья) > свекла (корнеплоды) > картофель (клубни) > пшеница (зерно) > естественная травяная растительность (листья и стебли). Полициклические и ароматические углеводороды (ПАУ) Эти вещества канцерогенной природы широко распространены в окружающей среде и происходят из многих источников, представляя собой комбинации многоядерных ароматических углеводородов, которые включают такие соединения, как антрацен, бензантрацен, фенантрен, флуорен, пирен, бензапирен, хризен и другие, обнаруживаются в воде, воздухе, табачном и коптильном дыме, пищевых продуктах, бензиновом и дизельном выхлопных газах, а также при неполном сгорании топлива. Канцерогенные углеводороды вызывают рак, как правило, при малой эффективной дозе в месте действия. Канцерогенная активность реальных сочетаний ПАУ на 70-80 % обусловлена бензапиреном. Поэтому по присутствию в пищевых продуктах и других объектах бензапирена можно судить об уровне их загрязнения ПАУи степени онкогенной опасности для человека. Бензапирен попадает в организм человека даже с такими пищевыми продуктами, в которых существование канцерогенных углеводородов до настоящего времени не предполагалось. Он обнаружен в хлебе, овощах, фруктах, маргарине, растительных маслах, а также в оюжаренном кофе, копченостях и мясных продуктах, поджаренных на древесном угле. Условия термической обработки пищевых продуктов имеют важное значение в накоплении бензапирена. В подгоревшей корке хлеба обнаружено до 0,5 мкг/кг бензапирена, его содержание в продуктах домашнего копчения может достигать 50 мкг/кг и более. Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, особенно при наличии в продуктах элюэнтов. Так, например, эффективным элюэнтом ПАУ является жир молока, который экстрагирует до 95 % бензапирена из парафино-бумажных пакетов или стаканчиков. Сильное загрязнение продуктов ПАУ наблюдается при обработке их дымом. При исследовании солодового кофе было обнаружено большое количество канцерогенных веществ, которое намного превышает их содержание в жареных зернах. Нормирование бензапирена осуществляется для копченых, мясных и рыбных продуктов, а также продовольственного сырья. Максимально допустимый уровень его содержания в этих продуктах составляет 0.001 мг/кг.

Диоксины и диоксиноподобные соединения

Диоксины и диоксиноподобные соединения обладают токсичностью, представляют реальную угрозу загрязнения пищевой продукции, включая питьевую воду. Источниками загрязнения могут быть предприятия металлургической, целлюлозно- бумажной и нефтехимической промышленности. Наиболее опасный источник диоксинов - заводы, производящие хлорную продукцию, в том числе пестициды. В частности, речь идет о крупнотоннажных производствах 2,4,5 –трихлорфенола (ТХФ) и полихлорбифенола (ПБХ). Непосредственными источниками интоксикации оказались 2,3,7,8 – тетрахлордибензо-п-диоксин (2,3,7,8 – ТХДД), образующийся как микропримесь при получении ТХФ, и 2,3,7,8 - тетрахлордибензофуран (2,3,7,8 –ТХДВ) – микропримесь ПХБ. ТХДД – наиболее опасный яд для человека. Отличается высокой стабильностью, не поддается гидролизу и окислению, устойчив к высокой температуре (разлагается при 750° С), действию кислот и щелочей, не воспламеняем, обладает высокой растворяемостью в жирах. Наряду с ТХДД существует 22 изомера ТХДД, у ТХДВ –38 изомеров. Совокупность однороднозамещенных полихлор- и полибромдибензо-п-диоксинов и дибензофуранов включает 420 индивидуальных соединений. Аналогичное разнообразие наблюдается у полигалогенированных бифенилов. Однороднозамещенные ПБХ включают 209 гомологов и изомеров. Столько же изомеров входит в ряды полибромбифенолов (ПББ), однородно замещенных галогенированных азобензолов и их азоксианалогов. Такое количество высокоопасных диоксинов, циркулирующих во внешней среде, ставит серьезные проблемы в их идентификации, определении, методах обнаружения, установлении гигиенических нормативов. При попадании в окружающую среду диоксины интенсивно накапливаются в почве, водоемах, активно мигрируют по пищевым цепям, особенно в ее жиросодержащих объектах. В организм человека диоксины поступают в основном с продуктами питания (98 –99 % от общей дозы). Среди основных продуктов опасные концентрации этих веществ обнаруживаются в мясе, молочных продуктах и рыбе. Следует отметить способность диоксинов накапливаться в коровьем молоке, где их содержание в 40 – 200 раз выше, чем в тканях животного. Источниками диоксинов могут быть картофель, морковь, другие корнеплоды, так как основная часть диоксинов кумулируется в корневых системах растений и только 10 % в наземных частях. Допустимая суточная доза для человека, согласно рекомендации ВОЗ, - 10нг/кг. Аналогичный уровень принят и в России. ДСД является отправной точкой для нормирования содержания диоксинов в различных продуктах питания. Гигиеническими требованиями установлены максимально допустимые уровни содержания полихлорированных бифенилов в рыбе и рыбопродуктах, являющихся приоритетными по загрязнению этими контаминантами. Остатки моющих средств На любом этапе подготовки пищевых продуктов или производства продуктов чистые химикаты являются наиболее опасными химическими рисками. Остатки после чистки могут оставаться на посуде, трубопроводах, и оборудовании и переноситься прямо на пищевые продукты. Также пищевые продукты могут быть обрызганы ими во время уборки прилежащих объектов. Поэтому очень важно при проектировании системы безопасности, анализируя опасные факторы, также рассматривать процедуры уборки. Проблемы могут быть предотвращены использованием нетоксичных моющих средств для уборки везде, где это возможно. Также необходимо соответствующее обучение персонала, контроль процедур дезинфекции, проведение проверок оборудования после чистки. Разработка плана НАССР. Пошаговая последовательность этапов работ при разработке плана НАССР представлена на рисунке. Ключевым является второй этап – изучение и разработка плана НАССР.

Создание рабочей группы по разработке и внедрению системы НАССР До начала разработки плана НАССР руководство предприятия должно проинформировать весь инженерно-технический состав о своем намерении. Предприятие в целом и персонал, который будет участвовать в этой работе, должны полностью разделить идею внедрения плана НАССР. Численность рабочей группы НАССР не является строго определенной. На малом предприятии это могут быть двое служащих, один из которых прошел обучение НАССР. К работе в такой команде могут быть привлечены сторонние специалисты, способные проанализировать все возможные биологические, физические, химические и качественные опасности в пищевой продукции. На больших предприятиях в рабочую группу НАССР привлекают многопрофильных специалистов различных служб, таких как инженерно-техническая, производственная, контроля и обеспечения качества. Численность такой группы не более 7-8 человек. Их отбирают исходя из их должностных полномочий, опыта работы на данном предприятии, знаний в области производства данной продукции и связанных с ним опасных факторов. Предлагается включить в работу следующие лица: -представитель производственного отдела; -представитель отдела качества; -представитель производственного подразделения; -микробиологи производственного подразделения; -главный механик производственного подразделения; -инженер-механик центральной лаборатории; -представитель инновационного центра. Члены рабочей группы НАССР должны хорошо знать все технологические операции и оборудование, используемое в производственном процессе, правила обслуживания оборудования и контрольно-измерительных приборов, должны быть знакомы со всей нормативной и технической документацией на продукцию. Они должны иметь представление о прикладных аспектах пищевой микробиологии, владеть принципами НАССР и методами их применения. В идеале многопрофильная команда должна обладать знаниями и опытом не только в технологии пищевых производств, но и обладать знаниями и опытом в агрономии, ветеринарии, медицине, охране окружающей среды, химии и инженерных дисциплинах в зависимости от предмета исследования, чтобы выявить все потенциальные биологические, химические и физические опасности. В условиях же реального производства команда приглашает сторонних экспертов или использует соответствующую техническую литературу. Рекомендуемая структура команды НАССР представлена на рисунке.

Рабочая группа НАССР организации

За исключением руководителя и технического секретаря, в зависимости от численности персонала организации, все остальные члены основной рабочей группы и группы НАССР в подразделениях могут привлекаться на непостоянной основе или в качестве совместителей с возложением дополнительных обязанностей. В обязанности руководителя входит: формирование состава рабочей группы в соответствии с областью разработки; внесение изменения в состав рабочей группы в случае необходимости; координирование работы группы; обеспечение выполнения согласованного плана; распределение работы и обязанностей; обеспечение охвата всей области разработки; обеспечение свободного выражения мнений каждому члену группы; делать все возможное, чтобы избежать трений или конфликтов между членами группы и их подразделениями; доведение до исполнителей решения группы; представление группы в руководстве организации В обязанности технического секретаря входит: организация заседаний группы; регистрация членов группы на заседаниях; ведение протоколов решений, принятых рабочей группой. Рабочая группа не должна формироваться исходя из иерархической структуры предприятия. Необходимо, чтобы рабочая группа прошла подготовку по изучению принципов системы НАССР и ее применению. Программа обучения должна включать следующие темы: 1. Основные принципы и этапы создания системы безопасности НАССР, изложенные в концепции, принятой комиссией FAO/WHO Codex Alimentarius в 1997 г. 2. Совместимость и взаимодействие системы НАССР с системами качества по ИСО 9000, GMP, GLP, национальными требованиями по безопасности, гигиене и санитарии питания. 3. Стандарт ГОСТ Р 51705.1 – 2001 «Система качества. Управление качеством пищевых продуктов на основе принципов НАССР». 4. Руководство по НАССР. 5. План НАССР и его основные стадии. 6. Идентификация потенциальных рисков и анализ опасных факторов, идентификация средств контроля параметров опасных факторов. 7. Идентификация критических контрольных точек. 8. Определение критических пределов. 9. Установка системы мониторинга в критических контрольных точках. 10. Разработка и внедрение корректирующих действий и процедур верификации. 11. Внедрение записей, документированных процедур и системы управления документацией. 12. Менеджмент и аудит системы НАССР. 13. Поддержание и улучшение системы безопасности пищевых продуктов на основе НАССР. Количество заседаний группы должно определяться в зависимости от сложности операций, охваченных областью разработки. Оптимальным как с точки зрения поощрения энтузиазма рабочей группы, так и в отношении преимущества системы НАССР считается период ее внедрения от 6 месяцев до одного года. Чтобы добиться успеха и продемонстрировать персоналу свою поддержку, руководство должно обеспечивать следующее: время для заседаний рабочей группы; финансовые средства; документацию, необходимую для работы группы; доступ в подразделения организации; доступ в испытательные лаборатории; доступ к источникам информации. Составление и утверждение технического задания на создание системы безопасности продуктов питания на основе НАССР. Разработка плана НАССР должна начинаться с составления технического задания. Целью любого плана НАССР является обеспечение безопасности пищевого продукта. Однако, поскольку это сама по себе очень широкая область, команда НАССР должна определить рамки плана НАССР, в пределах которых рассматриваются конкретные звенья цепи питания и общие классы опасных факторов, которые будут учтены. В техническом задании надлежит определить применение плана НАССР: для одного вида или для группы выпускаемой продукции. Если какой-то процесс является общим для нескольких изделий, то устанавливаются границы для того, чтобы не допустить опасность, которая может быть результатом небольших различий изделий. Таким образом, важна индивидуальная оценка безопасности изделия. План НАССР может охватывать весь процесс или ограничиваться определенной его частью. При определении этого параметра плана НАССР нужно принимать во внимание продолжительность, сложность процесса, а также то, возможно ли разделить процесс на отдельные его модули. Однако следует подчеркнуть такое требование: когда модули процесса составлены вместе, то все шаги процесса должны быть учтены. Это необходимо, чтобы гарантировать, что никакие опасности не могут быть пропущены. Также важно исследовать то, что происходит с изделием по ходу выполнения процесса, при перемещении изделия из одной области процесса в другую. Необходимо определиться, будет ли план НАССР предусматривать все типы опасных факторов – микробиологический, химический, физический и качественный, или только один тип – например, наиболее опасный, микробиологический. Опытные команды НАССР обычно рассматривают все виды опасных факторов сразу, и это с точки зрения управления лучше. Однако неопытная команда НАССР может решить, что легче ограничить количество видов опасностей при первоначальном изучении. Впоследствии процесс может быть повторен, чтобы рассмотреть другие виды опасных факторов. Также в техническом задании определяются этапы жизненного цикла изделия, которые будет охватывать системы безопасности. Будут ли включены в план НАССР, например, хранение на складе, распределение готовой продукции, транспортировка потребителю, розничная продажа, обработка потребителем и т.д. Здесь нужно исходить из того, насколько критичен рассматриваемый этап. Например, для решения вопроса относительно необходимости включения в план НАССР этапа «обработка потребителем» нужно учесть такие моменты: -является ли продукт безопасным по окончании производства, то есть все ли опасности были проконтролированы, или продукт нуждается в специальной обработке? -если скоропортящийся продукт может представлять потенциальную опасность при несоответствующей обработке (сырое мясное изделие), то для управления опасностью можно ли полагаться на действия потребителя? Кроме того, в техническом задании должны быть задокументированы задания (включая обязанности, ответственность и полномочия) и требуемый опыт постоянных и привлекаемых членов рабочей группы НАССР, а также минимальные критерии их квалификации. Техническое задание разрабатывается группой НАССР, подписывается руководителем группы и утверждается руководителем организации. Помимо технического задания руководитель организации издает приказ о назначении руководителя группы НАССР, его месте в организационной структуре предприятия, ответственности и полномочиях. Высшим руководством организации определяются финансовые и информационные ресурсы рабочей группы НАССР. Руководитель группы НАССР обладает полномочиями отбора и укомплектования основной команды НАССР и групп в подразделениях. Сбор данных о продукции Для каждого пищевого продукта, выпускаемого на предприятии, должен быть разработан отдельный НАССР план. Сбор данных о характеристиках конечного продукта и инструкциях по его применению будет способствовать полному представлению рабочей группы НАССР о данной продукции на всем протяжении ее жизненного цикла. Для каждого вида продукции должны быть указаны: наименования и обозначения нормативных документов и технических условий; наименование и обозначение основного сырья, пищевых добавок и упаковки, их происхождение, а также обозначения нормативных документов и технических условий, по которым они выпускаются; - требования безопасности (указанные в нормативной документации) и признаки идентификации выпускаемой продукции; условия хранения и сроки годности; - известные и потенциально возможные случаи использования продукции не по назначению; при необходимости – рекомендации по применению и ограничения в применении продукции, в т. ч. по отдельным группам потребителей (например, дети, беременные женщины, больные диабетом и т. п.) с указанием наличия соответствующей информации в сопроводительной документации; - возможность возникновения опасности в случае объективно прогнозируемого применения не по назначению. Рабочая группа должна как можно более полно описать продукт: название, состав, физическая/химическая структура (в том числе Aw, pH и др.), содержание микроорганизмов; виды обработки (тепловая, замораживание, посол, копчение и т. д.), - тип упаковки, - сроки хранения и условия хранения, - инструкция на упаковке. Описывая продукт, рабочая группа должна ответить на следующие вопросы: а) Как будет использоваться продукт, а именно: готов к употреблению, требует нагревания перед употреблением, для дальнейшей переработки и т. д.? б) Где будет продаваться продукт: оптовая или розничная продажа, предприятия общественного питания? в) Как продукт будет храниться (например, замороженным при - 18ºС)? Необходимая рабочей группе информация не ограничивается готовым продуктом. Информация о сырье включает: - описание ингредиентов, упаковочных материалов и т. д., содержащее информацию и происхождении, способах транспортировки, упаковке и т. д.; - физико-химические характеристики; - содержание микроорганизмов; - условия хранения до использования; - условия производства и т. д. Определение ожидаемой области применения продукции На данном этапе рабочая группа НАССР должна ответить на вопрос «Кто будет потребителем продукции, и как он будет использовать продукт?». При этом следует выяснить, охвачена ли «уязвимая» часть населения (дети, беременные женщины, пожилые люди, больные), и является ли этот продукт удовлетворительным для нее. Необходимо удостовериться, понятны ли этикетки любому потребителю и следует ли изменить состав продукции или способ ее изготовления, чтобы она была пригодна для всех групп населения. Необходимо предусмотреть возможность возникновения опасности в случае объективно прогнозируемого применения не по назначению. Построение производственной блок-схемы технологического процесса (диаграммы потока) Диаграмма потока используется как основа для проведения анализа рисков. Цель диаграммы – создание четкой и простой последовательности операций, включающей все стадии процесса (все технологические операции от поступления ингредиентов до поставки продукции и реализации ее потребителю) и детальные данные по циклу переработки продукта, в том числе режимы переработки на всех этапах, условия хранения, другие детали, позволяющие идентифицировать биологические, химические, физические опасности. Для повышения информативности диаграмма потока выполняется в виде последовательности блоков, при этом обычно учитываются стадии производственной цепи, находящиеся до и после стадий обработки, происходящих на предприятии. На диаграмме необходимо указать контролируемые параметры технологического процесса, периодичность и объем контроля (схемы производственного контроля), инструкции о процедурах уборки, дезинфекции, дератизации, а также гигиене персонала, согласованные с органами Минздрава России, техническое обслуживание и мойка оборудования и инвентаря, пункты санитарной обработки, расположение туалетов, умывальников, хозяйственно-бытовых зон, систему вентиляции. На диаграмме потоков также желательно указать в аспекте обеспечения безопасности пищевых продуктов: -критические переходные точки и условия временного хранения; -критические транспортные трубопроводы, распределительные клапаны и т.д.; -критические петли возврата для доработки и вторичной переработки; -критические пункты в организации уборки и дезинфекции; -критические точки в порядке пуска-остановки, аварийной остановки; -критические точки где возможны перекрестные загрязнения и заражения от сырья, обрабатываемой и конечной продукции, добавок, смазочных материалов, хладагентов, персонала, упаковки, поддонов и контейнеров. Если технологический процесс сложен и содержит большое количество операций, то его можно разбить на несколько малых процессов. При этом необходимо составить общую диаграмму потока описываемого процесса, состоящую из блоков малых процессов. В дополнение к диаграмме потока составляют схематичные планы помещений, куда входят производственная линия, схема передвижения персонала, включая раздевалки, душевые, пункты приема пищи. Диаграмму потока составляет рабочая группа НАССР с привлечением технологов, начальников участков и других специалистов. Проверка производственной блок-схемы Рабочая группа НАССР должна: сопоставить производственную блок-схему с существующим технологическим процессом; проанализировать процесс в разное время по всему производственному циклу; удостовериться, что блок-схема действенна на всем протяжении технологического процесса. При проверке сверяются все производственные операции с указанными критическими точками, потоки всех компонентов и упаковочных материалов, схемы передвижения персонала, потенциальные зоны загрязнения и т. д. В проверке блок-схемы должны участвовать все члены рабочей группы по разработке системы НАССР с привлечением ответственных сотрудников контролируемых подразделений. По результатам проверки составляется протокол, который подписывается руководителем рабочей группы НАССР и руководителем подразделения. Такая проверка должна проводиться регулярно через установленные интервалы времени и ее результаты должны документироваться. Выявление опасных факторов и определение контрольных мер На данном этапе необходимо разработать список опасностей, которые настолько важны, что могут, при неэффективном контроле за ними, с большой вероятностью нанести вред или вызвать заболевание и определить для них контрольные меры. Этап осуществляется в две стадии. Прежде всего, группа НАССР должна составить перечень всех потенциально опасных факторов (физических, химических, биологических и качественных). При этом анализу подлежат характеристика продукта, ингредиенты, входящие в продукт, его ожидаемое использование потребителем с точки зрения наличия известных опасных факторов, действия, производимые на каждом этапе производственной блок-схемы, где рассматриваются возможности появления, возрастания или сохранения опасных факторов в продукте, методы хранения, опасности, исходящие от персонала, оборудования, производственной среды, и инструкции для потребителя. Таким образом, необходимо проанализировать следующие источники опасности по критериям: 1. Сырье. -Какие опасные факторы вероятнее всего присутствуют в каждом из видов сырья, и могут повлиять на безопасность и стойкость продукта? -Существует ли сырье, которое опасно само по себе, если его добавляют слишком много? 2. Внутренние факторы (физические характеристика и состав пищевого продукта во время и после обработки, такие как рН, активность воды, консерванты и т.д.) -К возникновению каких опасностей может привести потеря контроля за составом продукта? -Будут ли микроорганизмы выживать или расти при существующем рецепте продукта? -Будет ли разрешено присутствие или увеличение числа болезнетворных бактерий и образование токсинов в продукте на дальнейших стадиях производственной цепи? -Присутствуют ли похожие продукты на рынке? Какие опасности связаны с этими продуктами? 3. Микробиологический состав пищевых продуктов. -Каков нормальный микробиологический состав продукта? -Изменяется ли популяция микроорганизмов при нормальном хранении во время срока годности? -Влияет ли изменение популяции микроорганизмов на безопасность пищевого продукта? -Показывают ли ответы на предыдущие вопросы, что есть высокая вероятность возникновения такого рода опасностей? 4. Помещения. -Есть ли опасные факторы непосредственно связанные с расположением помещений (опасный фактор перекрестного загрязнения во время перемещения сырья, полуфабрикатов, готовой продукции, или обусловленного движением персонала между различными участками) или внутренней окружающей средой? -Обеспечивает ли уборка помещений, дезинфекция и дератизация необходимый уровень, гарантирующий отсутствие риска? 5. Оборудование. -Обеспечивает ли оборудование должный температурный и временной контроль, необходимый для безопасности продукта? -Надежно ли оборудование или склонно к частым поломкам? -Есть ли вероятность загрязнения продукта опасными предметами (стекло)? -Какие устройства используются, чтобы увеличить безопасность потребителя (например, детекторы металла, магниты, сита, фильтры, решета, термометры)? -Может ли быть выполнена эффективная мойка оборудования, есть ли оборудование или отдельных его элементы, которые трудно поддаются очистке и могут быть источниками недопустимых рисков? -Может ли оборудование быть эффективно контролируемым в пределах требуемых допусков? 6. Персонал. -Может ли принятая производственная практика негативно влиять на безопасность продукта? -Достаточна ли подготовка в области гигиены работающих с пищевой продукцией? -Существует ли система контроля заболеваний работающих с пищевой продукцией? -Понимают ли служащие общие цели системы НАССР в соответствии с их должностными обязанностями, и как это влияет на процессы и продукцию? 7. Процессы. -Могут ли какие-либо микробиологические опасные факторы перенести этапы термической обработки и существует ли этап, на котором все виды патогенов будут уничтожены? -Может ли использование продукта в переработке вызвать потенциальную опасность? 8. Упаковка. - Обеспечивает ли упаковка защиту от загрязнения и повторного загрязнения химическими веществами и роста микроорганизмов (анализируется проницаемость, целостность, защита от постороннего проникновения)? -Необходимы ли маркировка и инструкции на упаковке для безопасного обращения и использования? -Есть ли на упаковке инструкции по безопасному обращению с продуктом и по правилам приготовления? -Используются ли предупреждающие записи на упаковке? -Каждая ли упаковка и коробка четко и аккуратно закодирована? -Каждая ли упаковка имеет правильную этикетку? -Все ли потенциальные аллергены включены в список ингредиентов на этикетке? 9. Хранение и реализация. -Существует ли контроль длительности хранения, температурных условий и условий обращения с продукцией на оптовых базах, магазинах розничной торговли? -Возможно ли злоупотребление продуктом потребителем (при котором продукт становится опасным)? Все эти факторы необходимо учитывать для проведения тщательного анализа и идентификации всех возможных рисков. Очень результативно использовать при определении опасностей метод «мозгового штурма». Это командная форма работы, когда собираются все участники группы НАССР и происходит совместное обсуждение проблемы. Каждый участник группы предлагает свою идею. Идеи все принимаются и фиксируются, их никогда не хвалят, не критикуют и не обсуждают в течение такого процесса. Уже после окончания процесса «мозгового штурма» команда НАССР анализирует все идеи. Необходимо, чтобы ни одна идея не была отклонена, если все члены команды не уверены, что она не рациональна. Такой метод «мозгового штурма» хорошо себя показал и часто используется для решения различных проблем. Популярность метода объясняется следующими его положительными сторонами: -творческий процесс рождает новые идеи, что невозможно при аналитическом размышлении. Когда все члены команды мыслят аналитически или с научной точки зрения, свежие идеи могут подавляться; -происходит обсуждение проблемы с разных позиций. Часто ошибочно мнение, что имеется только одно правильное решение каждой проблемы. Это ведет к тому, что начинают искать один правильный ответ и при этом упускают альтернативные, менее очевидные решения. -метод «мозгового штурма» позволяет наиболее полно использовать знания работников, привлечь весь их потенциал. При этом происходит взаимное обучение, взаимообогащение новыми знаниями. Вместе с тем, снижается вероятность, что будет что-то упущено, в данном случае потенциальная опасность. Весьма рационально вести записи обсуждения в структурной форме. Например, записывать в таблицу, отображенную на рисунке. Такая форма ведения записей помогает структурировать размышления и обсуждения команды НАССР. На второй стадии проведения данного этапа группа НАССР должна выявить из всего перечня потенциально опасных факторов значимые опасные факторы. Это необходимо, чтобы установить степень контроля для различных по значимости опасных факторов. Таким образом, система контроля должна сфокусироваться на значимых опасных факторах, которые с разумной долей вероятности могут произойти и могут привести к недопустимым рискам для здоровья потребителей. Без этой фокусировки может возникнуть тенденция контролировать слишком большое количество точек, и действительно значимые опасные факторы могут быть недостаточно оценены. В то же время это не исключает необходимость действий относительно меньших опасных факторов. Для этого по каждому потенциально опасному фактору проводят анализ риска с учетом вероятности появления фактора и значимости его последствий и составляют перечень факторов, по которым риск превышает допустимый уровень. То есть для каждого потенциально опасного фактора оцениваются вероятность его появления и серьезность последствий употребления в пищу. Такая оценка осуществляется при участии всей команды НАССР и основывается на: -знаниях участников группы НАССР, используя при этом экспертный метод оценки; -информации из научно-технической литературы: статей по пищевой микробиологии, НАССР, производству пищевых продуктов и т.д.; -информации от поставщиков и других производителей пищевой продукции, в том числе из Интернета; -информации по отзывам и жалобам потребителей; -эпидемиологических данных. Рекомендуется при этом использовать метод анализа рисков по качественной диаграмме. Метод состоит в следующем. 1. Оценивается вероятность появления опасного фактора, исходя из 4-х возможных вариантов оценки: а) практически равна нулю; б) незначительная; в) значительная; г) высокая 2. Оценивается тяжесть последствий употребления продукта, содержащего опасный фактор, исходя из 4-х возможных вариантов оценки: а) легкое; б) средней тяжести; в) тяжелое; г) критическое. 3. Строится граница допустимого риска на качественной диаграмме с координатами: «вероятность появления опасного фактора» - «тяжесть последствий» как указано на рисунке. 4. Для рассматриваемого фактора наносят на диаграмму точку с координатами, оцененными, как указано в п. 1 и 2. В случае, если точка лежит на или выше границы – оцененный фактор опасный, если ниже – не опасный. Диаграмма анализа рисков

Тяжесть последствий 4

3

Область

недопустимого

риска

Область

допустимого

2

риска

1

2

3

Вероятность появления опасного фактора Рисунок. Анализ рисков по качественной диаграмме. Далее для каждого идентифицированного опасного фактора необходимо разработать контрольные и предупреждающие воздействий. Контроль опасных факторов возможно вести несколькими способами. Микроорганизмы могут погибать при нагревании, их рост можно предотвратить или ограничить путем воздействия на них высокими или низкими температурами, создания условий низкой влажности, использования консервантов, регулирования уровня рН и т. д. Для предотвращения попадания остатков медикаментов и ветеринарных препаратов из организма животного или же пестицидов из растений чаще всего выдерживают определенный промежуток времени между их применением и забоем или доением животного или сбором урожая. Для предотвращения попадания паразитов контролируют питательный рацион животных, также применяют сушку и замораживание сырья. Жесткое разделение сырья от готовой продукции может предотвратить повторное загрязнение или снизить его уровень. При контроле опасных факторов физического происхождения (посторонних механических примесей) достаточно эффективны визуальные проверки, просеивание, применение металлодетекторов, магнитов и т. д. Таким образом, способы контроля рассматриваются для каждого установленного опасного фактора. Для предотвращения некоторых опасностей может потребоваться более чем одно контрольное и предупреждающее воздействие. В то же время более чем одна опасность может устраняться определенными контрольными мерами (например, пастеризация молока). Вся собранная информация систематизируется в таблицах определенной формы, или чек-листах. Результатом этапа «выявление опасных факторов и определение контрольных мер» будут заполненные чек-листы анализа опасных факторов. Определение критических контрольных точек Целью этого этапа является определение точек, этапов или процедур, в которых может быть применен контроль, благодаря чему можно предотвратить появление опасного фактора, устранить его или уменьшить до допустимого уровня. Критической контрольной точкой может быть любая стадия, на которой появление опасности может быть предотвращено, либо уменьшено до приемлемого уровня. Примерами критических контрольных точек могут служить: температурная обработка, охлаждение, проверка ингредиентов на присутствие остатков химических веществ, контроль за составом продукта, проверка продукта на загрязнение металлами. Критические контрольные точки должны быть тщательно изучены, а все данные по ним – задокументированы. Количество критических контрольных точек зависит от сложности и вида продукции, производственного процесса, попадающих в область анализа. Критические контрольные точки, определенные для продукта на одной производственной линии, могут отличаться от критических контрольных точек для такого же продукта на другой производственной линии. Это объясняется тем, что опасные факторы и лучшие точки для их контроля могут изменяться в связи с отличиями в: -планировке завода; -рецептах; -протекании процессов; -оборудовании; -выбранных ингредиентах; -санитарных и вспомогательных программах. Для идентификации критических контрольных точек часто используется дерево принятия решений, то есть диаграмма, которая описывает ход логических рассуждений. Применение дерева принятия решений должно быть гибким, с учетом того, где происходит процесс: в производстве, на этапе заготовки сырья, переработки, хранения, реализации или в других процессах. Члены рабочей группы должны использовать дерево принятия решений в описанной ниже последовательности, но руководствуясь здравым смыслом. Следует отметить, что этот метод не может применяться во всех ситуациях, могут использоваться и другие методы. В соответствии с ГОСТ Р 51705.1 – 2001 п.4.4.3 «С целью сокращения количества критических контрольных точек без ущерба для обеспечения безопасности к ним не следует относить точки, для которых выполняются следующие условия: предупреждающие воздействия, которые осуществляются систематически в плановом порядке и регламентированы в Санитарных правилах и нормах, в системе технического обслуживания и ремонта оборудования, в процедурах системы качества и других системах менеджмента предприятия; выполнение предупреждающих воздействий, не относящихся к контрольным точкам, оценивается группой НАССР и периодически проверяется при проведении внутренних проверок». Дерево принятия решений при анализе процесса, как было сказано ранее, будет отличаться от дерева принятия решений при анализе сырья. Для определения критических контрольных точек процесса необходимо ответить на каждый вопрос последовательно по каждому этапу, где выявлены значимые опасные факторы, и по каждому установленному опасному фактору. На рисунке изображено такое дерево принятия решений, а ниже приведены пояснения хода логических рассуждений. Вопрос 1. Проводятся ли предупреждающие действия в отношении установленных опасных факторов? Если предупреждающие действия проводятся, то группа переходит к рассмотрению вопроса 2. Если они не проводятся, то группа должна определить, необходимо ли организовать на этом этапе контроль для обеспечения безопасности продукта. Для принятия этого решения целесообразно ответить на вопросы 3 и 4. Если контроль необходим, группа должна подготовить предложения по внесению изменений в этап, процесс или продукт, чтобы осуществлять контроль и анализ. До следующего заседания необходимо достичь соглашения в отношении подготовленных предложений по корректирующим действиям и их внедрению. Вопрос 2. Является ли этот этап определяющим для устранения опасного фактора или его снижения до допустимого уровня? Отвечая на этот вопрос, рабочая группа должна учесть технические показатели продукта (например, рН, аw, концентрация консервантов и т.д.) и процесса. Этот вопрос позволяет выявить те стадии процесса переработки, которые конкретно предназначены для обеспечения микробиологической безопасности продукта (например, пастеризация, стерилизация в автоклаве или варка) или для удаления механических примесей (например, применение металлодетектора или просеивание). Если группа считает, что ответ должен быть положительным, и на данном этапе существуют критические контрольные точки, то следует точно определить, какие из них являются наиболее критическими, (например, этап процесса, ингредиенты, методики или процедуры). Если ответ на этот вопрос отрицательный, группе следует перейти к вопросу 3. Вопрос 3. Может ли опасный фактор проявиться или превысить допустимый уровень на данном этапе? Рабочая группа должна использовать данные из технологической схемы и данные, полученные при изучении производственной линии, чтобы определить, не может ли изучаемый опасный фактор находиться в производственной среде (например, персонал, оборудование, стены, полы, система канализации, сырье), которая в этом случае способна вызвать загрязнение продукта. Рабочая группа должна рассмотреть возможность увеличения опасного фактора выше допустимого уровня путем накапливания на нескольких стадиях процесса, хотя в каждой отдельной стадии процесса этого не происходит. В этом случае вся последовательность стадий процесса может рассматриваться как ККТ. Рабочая группа должна также рассмотреть следующие моменты: -Не осуществляется ли процесс в условиях, которые могут содержать опасный фактор? -Имеет ли упаковка продукта важное значение для предотвращения загрязнения на этой стадии? -Возможно ли перекрестное загрязнение от другого продукта или сырья? -Возможно ли загрязнение или повторное загрязнение от персонала? -Нет ли в оборудовании какого-либо пространства, где может накапливаться и застаиваться продукт, вызывая увеличение опасного фактора? -Не могут ли время и температурные условия хранения продукта в нерасфасованном виде вызвать нарастание опасного фактора в продукте? Ответ должен быть положительным, за исключением случаев, когда точно и определенно известно, что опасность отсутствует. Если ответ на вопрос 3 отрицательный, на данном этапе не существует критических точек. Если ответ на вопрос 3 положительный, следует перейти к вопросу 4. Вопрос 4. Может ли следующий этап устранить выявленный опасный фактор или свести возможность его появления до допустимого уровня? Если ответ на вопрос 3 положительный, то группа должна рассмотреть все следующие этапы производственной блок-схемы и определить, устранит ли один из них опасный фактор или сведет возможность его возникновения до допустимого уровня. Вопросы 3 и 4 должны рассматриваться одновременно. Если ответ на вопрос 4 отрицательный, то этап определяется как критический, и следует установить, какой фактор является критическим (например, ингредиенты, этап процесса, определенное рабочее место, режим работы, практика или процедуры). Если ответ на вопрос 4 положительный, то рассматриваемый этап не считается критическим, и группа должна перейти к следующему этапу процесса. ДЕРЕВО ПРИНЯТИЙ РЕШЕНИЙ ПО КРИТИЧЕСКИМ КОНТРОЛЬНЫМ ТОЧКАМ ПРОЦЕССА

Вопрос 1. Проводятся ли предупреждающие действия в отношении установленных опасных факторов

Внести изменения в этап, Да нет процесс или продукт да

Необходим ли контроль на этом этапе с точки зрения безопасности

Вопрос 2. Является ли этот этап определяющим для устранения опасного фактора или его снижения до допустимого уровня

нет Это не критическая

Вопрос 3. Может ли опасный фактор проявиться или превысить допустимый уровень на данном этапе

да нет контрольная точка Переход к следующему этапу да нет

Вопрос 4. Может ли следующий этап устранить выявленный опасный фактор или свести возможность его появления до допустимого уровня

Это не критическая контрольная точка Переход к следующему этапу да нет Это не критическая Критическая контрольная контрольная точка точка Переход к следующему этапу
На каждой стадии переработки рабочая группа НАССР должна рассмотреть возможные последствия отклонения от качественной производственной практики, определить, могут ли такие последствия оказаться недопустимыми с точки зрения пищевой безопасности, и оценить вероятность этого события. Кроме того, рабочая группа должна учитывать, что происходит с продуктом в дальнейшем, чтобы определить, является ли критической данная стадия переработки. Для принятия решений может потребоваться большой объем технических данных (таблица 2). Если анализ опасных факторов показывает, что трудно контролировать опасный фактор в определенной точке, и опасность не устраняется на последующих стадиях, то процесс (или продукт) следует модифицировать таким образом, чтобы исключить эту опасность. Критическая контрольная точка может характеризовать сырье, место, методику, процедуру или стадию процесса, однако она должна быть конкретной, например: · «отсутствие» конкретных загрязняющих веществ в сырье; · конкретная операция по очистке; · разделение установок для сырья и продуктов, подвергавшихся кулинарной обработке; · хлорирование охлаждающей воды в контейнерах; или · пастеризация продуктов.

ТАБЛИЦА 2

Технические данные, необходимые для анализа в аспекте концепции НАССР*

Эпидемиологические данные о болезнетворных бактериях, токсинах и химических веществах

· Случаи пищевых отравлений и других болезней пищевого происхождения.

· Результаты программ обследования и контрольных исследований.

· Регулируемые законодательством критерии микробиологической безопасности пищевых продуктов и допустимых остаточных количеств.

Данные о безопасности пищевых продуктов

· Возможное присутствие микробиологических и химических опасных факторов в сырье (см. выше пункт 1).

· Скорости роста опасных микробов в пищевых продуктах.

· Скорости гибели опасных микробов в диапазоне условий переработки.

· Превращение химических веществ и токсинов при переработке, хранении, реализации и использовании.

Данные по сырью, полуфабрикатам и готовым продуктам

· Рецептура

· Кислотность (pH)

· Водная активность (Aw)

· Упаковочные материалы

· Структура продукта

· Условия переработки

· Условия хранения и реализации

· Срок хранения

· Указания по употреблению, этикетки на упаковке.

Данные по переработке

· Количество и последовательность всех стадий переработки, включая хранение.

· Диапазон значений температурно-временных условий в технологическом процессе.

· Вторичная обработка (повторно используемый материал, остающийся в производственном процессе).

· Разделение зон с большим и малым рисками.

· Гидродинамические параметры (для жидкостей).

· Наличие незаполненного пространства в перерабатывающем оборудовании.

· Эффективность очистки и дезинфекции

*Не все данные могут потребоваться для каждого исследования

На следующем рисунке изображено дерево принятия решений при анализе сырья, а также приведены пояснения хода логических рассуждений. Чтобы определить, относится ли какой либо из видов сырья (включая ингредиенты, воду и упаковочный материал), используемого в готовом продукте, к критическим контрольным точкам, рабочая группа должна ответить на вопрос 1 (и, при необходимости, на вопросы 2 и 3) для каждого вида используемого сырья. Вопрос 1. Возможно ли, что сырье будет содержать изучаемый опасный фактор на недопустимом уровне? Рабочая группа должна дать ответ на этот вопрос с учетом, например, эпидемиологической информации, прежних показателей деятельности поставщика или информации, связанной с вопросами безопасности продукта. Если рабочая группа уверена, что ответ будет отрицательным, то сырье не следует рассматривать в качестве критической контрольной точки. Если же члены рабочей группы не уверены в ответе, то они должны принять положительный ответ и перейти к вопросу 2. Вопрос 2. Устранит ли опасный фактор переработка, включая ожидаемое использование потребителем, или снизит его до допустимого уровня? Рабочая группа предполагает, что опасный фактор присутствует в сырье, и последовательно изучает производственный процесс с использованием технологической схемы и обследует производственную линию для того, чтобы установить, устранят ли данный опасный фактор какие-либо стадии (включая использование потребителем) или снизят его до безопасного уровня. Если ответ на этот вопрос будет положительным, то рабочая группа должна перейти к вопросу 3. Если ответ – отрицательный, то качество сырья является критическим. Вопрос 3. Существуют ли опасные факторы перекрестного загрязнения для оборудования или других продуктов, которые не будут контролироваться? Если рабочая группа дает положительный ответ на вопрос 3, то качество сырья является критическим. Если ответ отрицательный, то качество сырья не является критическим, и эксперты переходят к анализу следующего вида сырья. Результаты исследований вносятся в соответствующие позиции чек-листа анализа опасных факторов. ДЕРЕВО ПРИНЯТИЯ РЕШЕНИЯ ПО КРИТИЧЕСКИМ КОНТРОЛЬНЫМ ТОЧКАМ СЫРЬЯ.

Вопрос 2. Устранит ли опасный фактор переработка, включая ожидаемое использование потребителем, или снизит его до допустимого уровня?

Вопрос1. Возможно ли, что сырье будет содержать изучаемый опасный фактор на недопустимом уровне
да нет не критическая контрольная точка

Вопрос 3. Существуют ли опасные факторы перекрестного загрязнения для оборудования или других продуктов, которые не будут контролироваться?

да нет критическая контрольная точка да нет критическая контрольная точка не критическая контрольная точка переход к следующему виду сырья