Каталог :: Математика

Шпора: Шпоры

1. Функция, ОДЗ

Пусть заданы 2 множества Х,У функцией или отображением из Х в У называется правило, по которому каждому значению их Х ставится в соотвествие значение из У. Числовые функции характеризуются тем, что оба множества Х и У являются подмножествами множества действительных чисел (или совпадают с ними). Область определения функции - множество возможных значений, которые может принимать аргумент. Графиком функции с областью определения называется множетсво точек Г={(x,f(x)|xÎX}.

2. Свойства функции.

1. Чётность. Если облать определения функции симметричня относительно нуля и f(-x)=f(x) "xÎD(f), то функция у=f(x) называется чётной. Если f(-x)= - f(x) "xÎD(f), то функция у=f(x) называется нечётной. Если не выполняется ни первое, ни второе условие, то функция обшего вида. 2. Монотонность. функция у=f(x) – возрастающая , если для любого х1 и х2 из области определения функции (х12) выполняется неравенство f(x1)<f(x2) Функция у=f(x) – убывающая, если для любого х1 и х2 из области определения функции (х12) выполняется неравенство f(x1)>f(x2). Возрастающие или убывающие функции называются монотонными. 3. Ограниченность. Функция у=f(x) называется ограниченной на некотором промежутке , если существует М>0, MÎR|"xÎданному промежутку |f(x)|£M. Функция у=f(x) называется ограниченной снизу, если существует mÎR |"xÎданному промежутку m£f(x). Функция у=f(x) называется ограниченной сверху, если существует mÎR |"xÎданному промежутку m³f(x). 4. Периодичность. Функция у=f(x) называется периодической с периодом Т не равным нулю, если выволняется условие f(x+ - T)=f(x).

3. Обратная функция.

Пусть Функция у=f(x) задана на множестве Х=D(f) и Y=E(f). Предположим, что различным значениям х1 и х2 соответствуют различные значения функции f(x1) и f(x2). Тогда для любого уÎУ мы сможем поставить в соответсвие хÎХ| y=f(x). Получает отображение f-1: У®Х. Это отображение называется обратным. График прямой и обратной функции симметричен относительно биссектрисы первой и третьей координатной четверти.

4. Сложная функция.

Пусть заданы две функции t=h(x), [xÎD(h), T=E(h)] и y=g(t), [tÎT=D(g), Y=E(g)] (область определения одной функции совпадает с областью значений другой функции и наоборот) Тогда справедливо следующее правило: из любого хÎХ по правилу ставится в соответствие y=g(h(x)). Это правило называется сложной функцией.

5. Основные элементарные функции.

1. Степенная. y=xa, a=const, aÎR. D(f)=(0;+¥). Если aÎNÞD(f)=R. 2. Показательная. y=ax , a>0,a не равно 1. D(f)=R/ E(f)=(0;+¥). Если a>1, следовательно, функция возрастает. Если аÎ(0;1), функция убывает. 3. Логарифмическая. y=logax, a>0, a не равно 1. D(f)=(0;+¥), E(f)=R. Если a>1, следовательно, функция возрастает. Если аÎ(0;1), функция убывает. 4. Тригонометрические. 5. Обратные тригонометрические.

6. Предел функции

Опр. Пределом функции у=f(x) в точке х0 (или при х →х 0 )называют число а, если для любой последовательности { хn} значений аргумента , сходящейся к (при этом все хn≠ х0 ) последовательность значений функции сходится к пределу а. Это записывают в виде: (*) Аналогично определяеся предел при х →∞ (случаи когда х0 есть +∞ или -∞). А именно, равенство (*) во всех случаях означает следующее: для любой последовательности { хn}, сходящейся к х0 , соответствующая последовательность {fn)} сходится к а.

7. Бесконечно малые и бесконечно большие функции.

Опр. Функция f(x) наз.бесконечно малой при х →х0, если и бесконечно большой при х →х0 , если Справедливы теоремы. 1.Сумма и произведение двух бесконечно малых функций (при х →х0) снова являются бесконечно малыми функциями (при х →х0). 2.Произведение бесконечно малой функции на ограниченную есть снова бесконечно малая функция.

8. Свойства предела функции.

1. Функция f(x) в точке х0 может иметь только один предел. Доказательство: Пусть (1) и одновременно где a≠b. (2) Тогда для любой последовательности { хn} сходящейся к х0 (где все хn≠ х0), мы должны иметь два предела что невозможно, т.к. последовательность {fn)} может иметь только один предел. 2.Если f(x) имеет предел в точке, то в некоторой окрестности этой точки функция ограничена. Доказательство. Предположим, что это не так. U1=( х 0-ε ; х0+ε), ε>0 . Ввиду неограниченности f(x) в этой окрестности должна найтись точка х1Î U1 , такая что │f1)│>1. Уменьшим вдвое эту окрестность и рассмотрим U2=( х0-ε/2 ; х0 +ε/2), ε>0 окрестность, в ней снова найдется такая точка х2 Î U2 , такая что │f2)│>2. Продолжив это рассуждение, получим Un=( х0-ε/n ; х 0+ε/n) , fn) > n, хn → х 0 ; fn)→∞. мы пришли к противоречию. 3.Если для всех точек х некоторой окрестности точки х0 выполняется неравенство f(x) ≥b , то и если такой предел существует. (доказывается по соответствующему свойству предела числовой последовательности). 4.Если в некоторой окрестности точки х0 имеем f(x)≥g(x) , то и если пределы существуют. 5. Если в некоторой окрестности точки х0 имеем f(x)≥g(x)≥h(x) причем пределы f(x) и h(x) при х→ х0 существуют и равны между собой Арифметические свойства пределов.

9. Односторонние пределы.

Опр.Число а называют пределом функции f(x)в точке х0 справа, если для любой сходящейся к х0 последовательности {хn}, в которой все х n0, соответствующая последовательность {f(хn)} сходится к а. Аналогично определяют предел функции слева:

10. Асимптоты функций.

Прямая у=а называется вертикальной асимптотой графика у=f(x) , если хотя бы один из пределов Прямая у=кх+b является наклонной асимптотой графика у=f(x) при х→+∞, если f(x) представима в виде f(x)= кх+b+α(х), где Теорема. Для того чтобы график функции у=f(x) имел х→+∞ наклонную асимптоту , необходимо и достаточно, чтобы существовали два предела Аналогично определяется наклонная асимптота для случая х→-∞.

11 Монотонные функции.

Функция y=f(x) называется возрастающей (убывающей) на некотором множестве Х принадл. R1, если она определена на этом множестве и если для любых значений х1, х2, принадлежащим Х, из условия х1<х2 следует нер-во: f(x1)<f(x2) (f(x1) >f(x2)) Функция y=f(x) называется неубывающей (невозрастающей) на некотором множестве Х принадл. R1, если она определена на этом множестве и если для любых значений х1, х2 принадлежащим Х из условия х1<х2 следует нер-во: f(x1)≤f(x2) (f(x1) ≥f(x2)) Невозрастающие, неубывающие, возрастающие и убывающие ф-и наз. Монотонными. Любая ограниченная монотонная функция имеет предел.

12. Замечательные пределы.

1) lim f(x)sinx/x =1(при х→0) – первый замечательный предел. Док-во. Т.к. ф-я y= sinx – четная, то достаточно показать, что предел при х→0 справа равен 1. T M tgx x K A O MK= sinx Видно, что sinx<x<tgx, 1<x/ sinx<1/cosx 1>sinx/x>cosx при х→0 справа имеем lim cosx=1, lim 1=1. Значит получили требуемое равенство. 2) lim (1+1/x)x =e(х→+ (-)∞) – второй замечательный предел. Док-во. Докажем 1)при +∞. Пусть х – любое число. Найдем такое целое n, чтобы выполнялось нер-во: n ≤ x< n+1 (1) Будем считать, что х>1,n>0. Сделав необходимые преобразования, получим: 1+1/ n ≥ 1+1/x> 1+1/(n+1) Зная условие (1), можем получить: (1+1/ n)n+1≥ (1+1/x)x> (1+1/(n+1))n или f(x) ≥(1+1/x) x>g(x). При х→+∞ ,n →+∞, f(x) и g(x)→е. По св- ву предела ф-и lim (1+1/x)x →е(при х→+∞), что и т.д. 2) при -∞. Пусть х=-t, где t>0. (1+1/x)x=(1-1/t)-t =((t-1)/t)-t =(t/(t-1))t =(1+1/(t-1))t =(1+1/(t-1))t-1 (1+1/(t-1))x Выражение в правой части →е*1=е при х→-∞, т.е. t →+∞, что и т.д.

13. Формула непрерывных процентов.

К0-исходный капитал. Р- номинальная процентная ставка. к- число периодов начисления . Пусть к=1, тогда К=К0*(1+р/100) к=2, К=К0(1+р/2*100)2 . к=360, К=К0(1+р/360*100)360 .,т.е. К=К0(1+р/к*100)к →К0*ер/100 при к →∞(это случай, если начисление процентов производится в течение одного года). Когда начисление процентов производится на протяжении нескольких лет – t, то, разделив промежуток [0;t] на к равных периодов начисления процентов, получим (к→∞): К0lim (1+рt/100*к)к= К0*ерt/100 К=К0*ерt/100-формула непрерывных процентов.

14 Непрерывность функции в точке.

y = f(x), x0 Î D(f) Функция f(x), определенная в некоторой окрестности точки х0, называется непрерывной в этой точке, если предел функции в точке x 0 существует и равен значению в этой точке: lim f(x) = f(x0) X ®Xo y y = f(x) x » x0; f(x) » f(x0) F(x0) y x0 x Δy x - x0 = Δx f(x) – f(x0) = Δy x x0 Δx x f(x) непрерывна в точке x0 Û lim Δy = 0 ΔX ® O

Свойства функций непрерывных в точке

1)Если f(x), g(x) – непрерывны в точке x0, то f(x) ± g(x); f(x)• g(x); f(x)/g(x) (g(x) ≠ 0) – также непрерывны в точке x0. Докажем, что F(x) = f(x)•g(x) непрерывна в точке x0 Дано: f(x) и g(x) – непрерывны в x0 Û lim f(x) = f(x0); lim g(x) = g(x0) X ® Xo X ® Xo lim (f(x)•g(x)) = limf(x)•lim g(x) (по свойству предела функции) = f(x0 )•g(x0) (по X ® Xo X ® Xo X ® Xo определению непрерывности) ® F(x) = f(x)•g(x) непрерывна в x0. 2) f(x) – непрерывна в точке x0, существует такая окрестность точки f(x0) > 0 x0 , во всех точках которой f(x) > 0.

15. Основные элементарные функции:

1. Степенные функции: y = xa, где а – любое постоянное число. Областью определения считается промежуток x > 0, но если, например, а–натуральное число, функция определена для всех х. 2. Показательная функция: y = ax, где a > 0, a ≠1. Область определения – множество всех действительных чисел. 3. Логарифмическая функция: y = logax, где a > 0, a ≠1. Область определения: x > 0. 4. Тригонометрические функции: y = sin x, y = cos x, y = tg x, y = ctg x. Область определения для sin x и cos x – множество действительных чисел. 5. Обратные тригонометрические функции: y = arcsin x, y = arccos x, y = arctgx. Область определения x Î [-1; 1] для arcsin x и arccos x, множество действительных чисел для arctg x. Действия над функциями, которые считаются допустимыми: 1. все арифметические действия (f + g, f – g, f•g, f/g); 2. построение сложной функции. Элементарными функциями называются такие, которые получаются из основных с помощью допустимых действий. Элементарные функции непрерывны в каждой точке своей области определения.

16. Теорема о непрерывности сложной функции.

Пусть даны две функции x = φ(t) с областью определения Т и множеством значений Х, и y = f(x) с областью определения Х и множеством значений Y. Тогда «цепное правило: φ f t ® x ® y определяет новую функцию с областью определения Т. Эта новая функция обозначается y = f ( φ(t) ) и называется сложной функцией. Если x = φ(t) – непрерывна в t0 Þ y = f ( φ(t) ) – непрерывна в t0 y = f(x) – непрерывна в x0 = φ(t0) Доказательство: x = φ(t) – непрерывна в t0 Û Δt ® 0 Þ Δφ ® 0 (Δx ® 0) y = f(x) – непрерывна в x0 Û Δx ® 0 Þ Δf ® 0 ↓ Δt ® 0 Þ Δx ® 0 Þ Δf ® 0 (Δt ® 0 Þ Δf ® 0) y = f(φ(t)) – непрерывна в t0

17. Теорема о непрерывности обратной функции.

Пусть y = f(x) - функция с областью определения X (D(f) = X) и областью значений Y (E(f) = Y). При этом разным значениям х отвечают разные значения y. Тогда для каждого значения y Î Y существует только одно x Î Х, такое , что f(x) = y. Если мы сопоставим каждому y Î Y именно такое x, то получим отображение множества Y в множество X. Это отображение называется обратным к данному отображению f и обозначается f -1 , т. е. обратная функция для y = f(x) есть x = f –1(y). Пусть y = f(x) (x Î D (f)) непрерывна и возрастает на отрезке [a; b], тогда обратная функция x = f—1(y) также непрерывна и возрастает на [f(a); f(b)]. (аналогично для непрерывной убывающей функции). 18. Односторонняя непрерывность. Точки разрыва, их 7классификация. Функция , определённая в некоторой окрестности точки х0, называется непрерывной в этой точке, если предел функции в точке х0 существует и равен значению в этой точке. Функция f(x), определённая на отрезке [a,b], называется непрерывной в точке а справа, если lim f(x)=f(a) (аналогично слева) x®a+0 Функция y=f(x) непрерывна на Х, если эта функция непрерывна в каждой точке этого промежутка. Если lim f(x) не равен lim f(x0) X®Xo ,то х0 - точка разрыва непрерывности этой функции. Классификация точек разрыва. 1. х0 – точка разрыва первого рода, если одосторонние пределы существуют, но они не равны между собой. 1.1 Точка устранимого разрыва, если односторонние пределы равны между собой, но их значение не совпадает со значением функции в этой точке. Lim f(x)=lim f(x) не равен f(x0) X®Xo-0 X®Xo+0 1.2 Точка разрыва с «конечным скачком». Правый и левый пределы не совпадают. 1.3 Точка разрыва с «бесконечным скачком». Хотя бы один односторонних пределов бесконечен. 2. х0 - точка разрыва второго рода, если хотя бы один из односторонних пределов не существует.

1. Производная функции и ее геометрический смысл.

Приращением функции y =f(x) в точке x0 называется разность Δу=f(x)-f(x0)= f(x+Δx)-f(x0) Производной от функции y=f(x) в точке х0 наз. Предел отношения Δу/Δх, когда Δх→0 (при усл., что этот предел существует) Написать обозначение производной. Геометрический смысл производной. Пусть Г- график функции y=f(x). Рассмотрим на Г т. А(x0,f(x0)) и т. В (x0+Δx,f(x0+Δx)) В С y=f(x) А Прямая АВ называется секущей. Будем считать, что y=f(x)-непрерывная функция, тогда если Δх→0, то f(x0+Δx)→f(x0), т.е. В→А при Δх→0. Пусть γ – угол наклона секущей относительно оси ОХ. Если существует предел lim γ=γ0 при Δх→0, то прямая, проходящая через А и образующая с осью ОХ угол γ0, называется касательной к Г в точке А. Пусть С(f(x0+Δх), f(x0)) – точка, дополняющая отрезок АВ до прямоуг. треугольника АВС. Т.к. АС//ОХ, то tgγ =Δу/Δх. Переходя к пределу, получим: tgγ0=f′(x0) Т.е. геометрический смысл производной состоит в том, что f′(x0) – это тангенс угла наклона касательной к графику y=f(x) в точке (x0,f(x0 )).

2. Уравнение касательной.

Найдем ур-е касательной к графику Г ф-и y=f(x) в точке А(х0, f(x0)): т.к. т. А принадлежит Г и ур-ю касательной, то f(x0)=kx0+b, откуда b= f(x0)-kx0, значит, касательная задается след. Ур-м: y= kx+ f(x0)-kx0= f(x0)+k(х-x0) Т.к. k= f′(x0), то y=f(x0)+ f′(x0)(х-х0).

3. Односторонние производные.

Правой(левой) производной от y=f(x) в точке x0 называется предел f′(x0)=lim (f(x+Δx)-f(x0))/Δх при Δх→0+0(Δх→0-0). Если левая и правая производные функции в точке x0 сущ-т, и они равны, то производная f′(x0) сущ-т и равна им. Если же левая и правая производные функции в точке x0 не равны, то y=f(x) не имеет производной в точке x0.

Правила дифференцирования

Теорема. Если функции u=f(x), v=g(x) дифференцируемы в точке х0, то сумма, разность, произведение и частное этих функций также дифференцируемы в точке ч0 и выполняются следующие формулы: (U+(-)v)′=u’+(-)v’ (uv)’= u’v + uv’ (u/v)’= (u’v - uv’)/v2

4. Производная сложной и обратной функций.

Теорема. Если функция y=f(x) дифференцируема в точке t0, g(t0)=x0, то сложная функция y=f(g(x)) также дифференцируема в точке t0 и выполняется след. Формула: f’(g(x))=f’(x0)*g’(t0) Теорема. Если y=f(x) имеет обратную ф-ю x=g(y) и в точке х0 производная f′(x) не равна 0, то обратная функция g(y) диф-ма в точке y0=f(x0) и g’(y)=1/f(x0)

5. Производная элементарных функций.

Обл. определения производной f’(x) явл. множество всех точек x0 , в которых y=f(x) имеет конечную производную. Производная каждой элементарной ф-и явл. элементарной ф-ей. Производная логарифмической ф-и: (logax)’=1/xlna Производная показательной ф-и: ax= ax lna Производная степенной ф-и: (xa)’ = axa-1 Производная тригонометрической функции: (Sinx)’=cosx (cosx)’=-sinx (tgx)’=1/cos2x Производные обратных тригонометрических функций: (Arcsinx)’=1/(1-x2)1/2 (Arccosx)’=-1/(1-x2)1/2 (arctgx)’=1/(1+ x2)

6. Понятие функции, дифференцируемой в точке.

Опр. Функция у=f(x) называется дифференцируемой в точке х0 , если ее приращение в х0 можно представить в виде ∆у=А∆х+α(∆х)∆х (*), где А – некоторое число, α(∆х) – функция от ∆х, являющаяся бесконечно малой при ∆х→0. Связь между дифференцируемостью функции в точке и существованием производной в этой же точке устанавливает Теорема. Теорема. Для того чтобы f(x) была дифференцируема в точке х 0, необходимо и достаточно, чтобы она имела в этой точке конечную производную. Доказательство. 1.Необходимость. Пусть функция у= f(x) дифференцируема в х0. Тогда ее приращение можно представить в виде (*). Следовательно Следовательно производная существует и равна А. 2.Достаточность. пусть существует конечная производная f 0 )=А. Тогда по определению производной, lim∆х→0 (∆у/∆х)=А. положим, что α(0)=0 и α(∆х)= (∆у/∆х) – А, если ∆х≠0. Определеннная так функция α(∆х) является бесконечно малой при ∆х→0. Действительно lim∆х→0α (∆х)= lim∆х→0 ((∆у/∆х) – А)=А – А=0. Кроме того , ∆у=А∆х+α(∆х)∆х. Тем самым доказано, что функция дифференцируема в х0. Замечание. Если функция дифференцируема в х0, то из (*) следует, что ∆у→0, когда ∆х→0, т.е. функция непрерывна в данной точке. Обратное утверждение неверно. Функция может быть непрерывной, но не дифференцируемой в данной точке. Пусть f(x) дифференцируема в х0 ,следовательно, существует производная и коэффициент А из (*) совпадает с производной, как следует из доказательства теоремы. Тогда формулу (*) можно представить f(x)=f(х0)+ f 0) ∆х +α(∆х)∆х. α(∆х) б.м. функция (∆х→0) (**) ∆f(х0)~ f 0) ∆х (приращение функции эквивалентно произведению производной на приращение аргумента)

7. Дифференциал функции в точке

Опр. Диф-м функции в х0 наз. линейная относительно приращения аргумента часть приращения функции в этой точке, эквивалентная всему приращению. d f(х0)= f 0) ∆х; ∆х=dх; df(х0)= f 0) dх Геометрический смысл. Уравнение касательной в х0 эквивалентно уравнению у=f(х0)+ f 0) ∆х (***) сравнивая (**) и (***) видим, что расстояние от точки Р(х, f(x)) на графике до точки Q (x, f(х0)+ f 0 ) ∆х) на касательной равно α(∆х)∆х, т.е. является бесконечно малой более высокого порядка, чем ∆х, когда ∆х→0. Вывод: геометрический смысл дифференцируемости f(x) в точке х 0 состоит в том, что расстояние от точки на ее графике до соответствующей на касательной стремится к нулю "быстрее", чем ∆х.

8. Приближенные вычисления.

Df(x0)»f '(x0) Dx f(x0+Dx)- f(x0) » f '(x0) Dx Dx®0 f(x0+Dx) = f(x0)+ f '(x0) Dx

9. Эластичность функции и ее свойства.

Эластичностью функции y = f(x) в точке х0 называется следующий предел Eyx(x0) = lim ((Δy/y): (Δx/x)). Δx ® 0 Говорят также, что Еxy(x0) – это коэффициент эластичности y по x. (При достаточно малых Δx выполняется приближенное равенство (Δy/y): (Δx/x) » Еy Þ Δy/y » Еy Δx/x. Эластичность Ey – это коэффициент пропорциональности между относительными изменениями величин y и x.) Еyx(x0) = lim ( [(f(x0 + Δx) – f(x0 ))/f(x0)] : [Δx/x0] ) = (x0/f(x0 ))f’(x0) Δx®0 Ey = (x/y)y’. Если y’/y представить как логарифмическую производную, то получается Ey = x(lny)’ x = 1/(1/x) = 1/(lnx)’ Þ Ey = (lny)’/(lnx)’ Свойства эластичности (эластичность во всех последующих примерах будет браться по x) 1) Eky = Ey Eky = x (ln (ky))’ = x (ln k + ln y)’ = x(ln y)’ = Ey 2) Euv = Eu + Ev Euv = x (ln uv)’ = x (ln u + ln v)’ = x(ln u)’ + x(ln v)’ = Eu + Ev 3) E u/v = E u – Ev 4) y = y1 + y2; y1, y2 > 0 Emin £ Ey £ Emax Emin = min {E(y1), E(y2)} Emax = max {E(y1), E(y2)} (Лемма a/b, c/d – дроби; a/b £ c/d Þ a/b £ (a+c)/(b+d) £ c/d) E(y) = y’x/y E (y1 + y2) =( (y1 + y2)’/ (y1 + y2))•x = ( (y1’ + y2’)/ (y1 + y2))•x E(y1) = (y1’/y1)x; E(y2) = (y2’/y2)x Из леммы получаем: (y1’/y1)x £ ( (y1’ + y2’)/ (y1 + y2))•x £ (y2’/y2)x Þ Þ Emin £ Ey £ Emax 5) Для функций y = f(x) и x = g(t) эластичность y по tв точке t0 удовлетворяет следующему равенству: Eyx(t0) = Eyx(g(t0))Ext(t0). Eyt(t0) = (ln y)’t = (ln y)’ t (ln x)’t = (ln y)’x xt Ext(t0) = Eyx(g(t0))Ext(t 0) (ln t)’t (ln x)’t (ln t)’t (ln x)’x xt’ 6) Для функции y = f(x) эластичность обратной функции x = g(y) в точке x 0 удовлетворяет соотношению: Exy(y0) = E –1yx(g(y0)). Поскольку g (y) – обратная функция, то выполняется тождество f(g(y)) = y По свойству 5) получается Eyx(g(y0))Exy(y0 ) = Eyy(y0) = lim((Δy/y):(Δy/y)) = 1 Þ Þ Eyx(g(y0))Exy(y0) = 1 Þ Exy(y0) = E –1yx(g(y0))

10 Производная сложной и обратной функции.

Теорема.Если функция y=f(x) имеет обратную функцию x=g(y) и в точке х0 производная f¢(x) не равна нулю, то обратная функция g(y) диффернцируема в точке у0=f(x0) и g¢(y0 )=1/f(x0) или x¢y=1/y¢x. Доказательство. Пусть а=f¢(x0). Тогда из дифференцируемости f(x) в х0 следует, что приращение Dу= f(x0+Dх) - f(x0) можно представить в виде Dу=аDх+аDх=(а+а) Dх, где а=а(Dх)®0 при Dх®0. Так как а не равно нулю, то отсюда следует, что Dх®0, когда Dу®0. Имеем g¢(y0)= lim g(y+Dy)-g(y0) = lim Dx =lim ìDyü-1 = 1 . Dy®0 Dy Dy®0 Dy Dy®0 îDxþ f¢(x0) Теорема.Если функция у=f(x) дифференцируема в точке t0 и g(t0)=x0, то сложная функция y=f(g(x)) также дифференцируема в t0 и выполняется следующая формула: d f(g(t))/dt| t=to=f¢(x0)*g¢(t0) или y¢ t=y¢x*t. Доказательство. Функция y=f(x) дифференцируема в точке х0, поэтому её приращение можно представить как Dy=f¢(x0)+a(Dx)*Dx. Где Dx®0 при Dt®0 поскольку функция g(t) непрерывна (следствие дифференцируемости) в точке t0. Так как а(Dx)®0 при Dx ®0 и при Dt®0. Поэтому d f(g(t))|t=to=lim (f¢(x0)) Dx +a(Dx) Dx = dt Dt®0 Dt Dt =f¢(x0)g¢(t0)+0*g¢(t0)= f¢(x0)g¢(t0).

11. Производная основных элементарных функций.

Производная логарифмической функции. y=logax Dy=loga(x+Dx)-logax=loga(1+Dx/x)=1 loga(1+Dx/x)= 1loga(1+t)=1 loga(1+t)1/t Dx Dx Dx x Dx/x x t x где t=Dx/x Используя непрерывность функции logax в точке х=е и первый замечательный предел, найдём производную логарифмической функции: (logа х)¢= 1(logа(lim(1+t)1/t) = 1loga e= 1. x t®0 x x lna Производная показательной функции. У=ах является обратной для функции х=logау. По теореме у¢х= 1= 1 =ylna x¢y 1/ylna Поскольку у=ах, получаем (ах)¢=ахlna. Производная степенной функции. Функция у=ха при х>0 может быть представлена в виде хаalnx. Найдём (ха)¢=( еalnx)¢= е alnx(alnx)¢=ха*а/х=аха-1 Аналогично доказывается для x<0. Производные тригонометрических функций. С помощью формулы sinа-sinb=2sin[(a-b)/2]*cos[(a+b)/2] , первого замечательного предела и непрерывности функции cos x найдём (sinх)¢=lim sin (х+Dх) – sinх= lim 2sin(Dх/2) cos(х+Dх/2) = Dx®0 Dx Dx®0 Dx =lim sin(Dх/2) cos(х+Dх/2) = cos x Dx®0 Dx/2 Для нахождения производных функций cos x и tg x можно использовать тождество cos x=sin(x-p/2) , правило дифференцирования сложной функции. Итак, (sin х)¢=cos x, (cos x)¢= - sin x, (tg x)¢=1/cos2 x. Производные обратных тригонометрических функций. Функция у=arcsinx является обратной для функции х=sinу. Следовательно, (arcsinx)¢x= 1 = 1= 1= 1 (siny)¢y cosy Ö1-sin2xØ Ö1-x2Ø Аналогично находятся остальные обратные тригонометрические функции. (arcsinx)¢=1/Ö1-x2Ø, (arccosx)¢= - 1/Ö1-x2Ø, (arctgx)¢=-1/(x2 +1).

12. Правило Лопиталя

Теорема (правило Лопиталя ). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел (конечный или бесконечный), то существует и предел при этом выполняется равенство: Доказательство: Доказательство теоремы дадим в случае, когда ƒ(х) и g(х) – бесконечно малые функции и А=а – число. Изменим, если это необходимо, определение функций ƒ(х) и g(х) в точке а так, чтобы значения этих функций в точке а были бы равны нулю: ƒ(х) = g(х)=0. Так как и то ƒ(х) и g(х) непрерывны в точке а, и к этим функциям можно применить теорему Коши. Учитывая, что ƒ(а) = ƒ(b)=0, получим для некоторой точки с, расположенной между точками а и х . При х→а имеем с→а и, следовательно если ƒ(х)→0 и g(х)→0 (соответственно, |ƒ(х)|→+∞, |g(х)|→+∞), когда а→А. Правило Лопиталя позволяет во многих случаях найти предел вида или, иными словами, раскрыть неопределенность. В ряде случаев по правилу Лопиталя удается раскрыть неопределенности вида Для этого следует воспользоваться тождеством которое приводит указанные неопределенности к виду 0•х.

13 .Производные и дифференциалы высших порядкров.

Если для функции y=f(x) определена производная у(к-1) порядка (к-1), то производную у(к) порядка к (при условии ее существования) определяют как производную от производной порядка (к-1), т.е. у(к) = (у(к-1))′ . В частности, у’’=(y’)’- производная второго порядка, y’’’=(y’’)’ – третьего и т.д. При вычислении производных высших порядков используют те же правила, что и для вычисления у’. Табл. Произ-х высшего порядка:
f(x)

fn(x)

Xa

Ex

Ekx

Akx

Lnx

Logax

Sinkx

Cos kx

A(a-1)*(a-2)*.*(а-n+1)*х a-n

Ех

Kn*ekx

(K* Lna)n*akx

(-1)n-1*(n-1)!/xn

(-1)n-1*(n-1)!/(xn*lna)

kn*sin(kx+n*π/2)

kn*cos (kx+n*π/2)

Дифференциалы высших порядков ф-и y=f(v) последовательно определяются таким образом: d2y=d(dy) – диф-л 2-го порядка d3y=d(d2y). dny=d(d n-1 y) - диф-л n-го порядка Если ф-я y=f(v), где v – независимая переменная или линейная ф-я v=кх+в переменной х, то d2y=y’’(dv)2, d3y=y’’’(dv) 3,., dny=y(n)(dv)n. Если же y=f(v), где v=g(x)≠кх+в, то d2y=f’’(v)*(dv)2 + f’(v)d2v и т.д. (т.е. св-во инвариантности не выполняется).

14 Формула Тейлора.

Пусть функция f(x) имеет n производных в точке x0. Многочлен T(x) = f(x0) + ( (f’(x0))/1! )(x – x0)1 + (f ”(x0))/2!(x – x0)2 +.+ (f (n) (x0))/n!(x – x0)n Называется n-м многочленом Тейлора функции f(x) в точке x0. Пусть функция f(x) имеет в ε – окрестности точки x0 (n + 1) производных. Тогда для любой точки х из этой окрестности найдется точка с, расположенная между точками х и х0, для которой выполняется следующая формула F(x) = T(x) + ( f(n+1)(c) / (n + 1)!)(x – x0)n+1 – формула Тейлора, где Т(x) – n-й многочлен Тейлора функции f(x) в точке х0, rn(x) = ( f(n+1)(c) / (n + 1)!)(x – x0)n+1 – остаточный член в формуле Лагранжа. Предположим, что (n+1)-я производная функция f(x) ограничена в окрестности точки х0. Тогда rn(x) является бесконечно малой более высокого порядка, чем (х-х0)n при х ® х0. (lim (rn (x)/(х-х0)n) = lim [((f(n+1) (c))/(n+1)!)(x-x0)] = 0 – в силу Х®Хо Х®Хо Ограниченности f(n+1) (c) в окрестности х 0.) Следовательно ошибка в приближенном равенстве f(x) » Tn(x) (*) также является бесконечно малой более высокого порядка, чем (х – х0 )n, когда х ® х0. Формула (*) применяется для приближенных вычислений. Используя равенство (*) можно подучить, например следующие формулы (при х®0): 1) (1+x)a » 1 + (a/1!)x + (a(a-1)/2!)x2 +.+ (a(a-1).(a-n+1)/n!)xn, 2) ex » 1 + x/1! + x2/2! +.+ xn/n!, 3) ln(1+x) » x – x2/2 + x3/3 – x4/4 +.+(-1)n+1xn/n 4) sin x » x – x3/3! + x5/5! – x7/7! +.+(-1)kx2k+1/(2k+1)!, 5) cos x » 1 – x2/2! + x4/4! – x6/6! +.+(-1)kx2k/(2k)!, где в каждом случае ошибка является бесконечно малой относительно хn.

15 Условия монотонности функции.

Если у=f(x) непрерывна на [a,b] и дифференцируема на этом отрезке, то у=f(x)-const, тогда и только тогда, когда f¢(x)=0 при "х'[a,b]. Следствие у=f(x), y=g(x) непрерывна и диффиренцируема на (a,b) и f¢(x)=g¢(x), то f(x)=g(x)+C. y=f(x) возрастает на Х, если для любых х12'Х, таких что х1<x2Þ f(x1)<f(x2 ), убывает если x1<x2Þ f(x1 )>f(x2). Достаточное условие монотонности. Если функция непрерывна, дифференцируема на (a,b) и внутри (a,b) сохраняет знак, то функция у=f(x) монотонна. Докажем для f¢(x)>0 Þ y=f(x) – возрастает на (a,b) (для убывающей функции доказательство аналогичное) Доказательство. Возьмём точки из отрезка (a,b) х1 и х2, такие что х12. По теореме Лагранжа найдётся тоска с, приналежащая отрезку, для которой f(x2)-f(x1)= f¢(c)(x2-x1 ). Так как х1<c<x2, то точка с является внутренней точкой промежутка Х. Поэтому f¢(c)³0 и f(x2)³f(x 1). Таким образом, мы доказали, что функция f(x) не убывает на промежутке Х.

16. Условия сущ. экстремула

Необходимое условие существования экстремума. Для того, чтобы дифференцируемая функция f(x) имела в точке х0 локальный экстремум, необходимо, чтобы в этой точке выполнялось равенство f¢(x0)=0. Доказательство. Поскольку х0 – точка экстремума, то существует такой интервал (х 0-e, х0+e), на котором f(x0) – наибольшее или наименьшее значение. Тогда по теореме Ферма f¢(x0)=0. Точки, в которых производная функция обращается в нуль, называются стационарными. Достаточное условие существование экстремума. Если при переходе через точку х0 производная дифференцируемой функции f(x) меняет свой знак с плюса на минус, то точка х0 – точка локального максимума функции f(x), а если с минуса на плюс, то х0 – точка локального минимума. Доказательство.(для максимума, для минимума – аналогично, то бишь самостоятельно) Пусть f(x) – непрерывная дифференцируемая функция. f¢(x) меняет знак с «+» на «-». Пусть для любого хÎ (х0 -D, х0] f¢(x)>0 Þ по достаточному условию монотонности производная возрастает на данном интервале Þ f(x0)³f(x) "CÎ(x 0-D, x0] Пусть для "CÎ[х00+D) f¢(x)<0, следовательно, функция убывает на хÎ[х00+D) Þf(x0)³f(x) для любого хÎ[х00 +D). Вывод: для любого х Î (х0-D, х0+D) х0 – точка максимума для функции у=f(x). Ч.т.д. 17. Отыскание наибольшего и наименьшего значений функции, заданной на отрезке. Наибольшее значение достигается в некоторой точке х0Î [a,b]. При этом возможны лишь следущие 3 случая: 1) х0=а, 2) х0 =b, 3)х0Î(a,b). Пусть х0Î(a,b). Тогда х0 – точка локального экструмума и, если существует f¢(x0), f¢(x0)=0. Однако производная f¢(x0) может и не существовать. Критической точкой функции f(x) называется точка, в которой производная f¢(x) либо не существует, либо равна нулю. Из определения вытекает, что точка локалького экстремума x0 является критической точкой функции f(x) . Предположим, что критические точки функции f(x) на интервале (a; b) образуют конечное множество {x1,x2 , .,xn}. Из сказанного выше следует, что точка x0 , в которой функция принимает наибольшее (или наименьшее) значение, совпадает с одной из точек: a,b,x1,.xn. Поэтому для максимального значения функции f(x) на отрезке [a,b] имеем равенство fmax =max{f(a),f(b),f(x1),.f(xn)}. Аналогично для минимального значения fmin=min { f(a),f(b),f(x1),.f(xn)}. 18. Общая схема исследования функции и построения ее графика. 1.Область определения функции, поведение функции на границе области определения. Асимптоты. Точки пересечения с осями. (Справка: для нахождения асимптот рассматриваем односторонние пределы (вертикальная асимптота), и пределы при х→∞ для выражений f (x)/х (предел равен к) и f(x)-кх (b) (наклонная асимптота у=кх+b). Подробнее вопр.1.3. 2.Четность, нечетность. Периодичность. (справка: четная f(-x)=f(x); нечетная f(-x)=-f(x). Периодичность f(x+Т)=f(x)=f(x-Т)) 3.Монотонность и экстремумы. (Функции, убывающие или возрастающие на некотором числовом промежутке, называются монотонными. Находим производную, критические точки. промежутки возрастания и убывания, точки максимума и минимума). 4.Выпуклость, вогнутость, точки перегиба. (Для этого находим вторую производную, точки перегиба, распределяем знаки второй производной: - вогнутая, +выпуклая) 5.График функции с обозначением всех найденных точек и асимптот.

19. Теорема Ферма

Пусть ф-я у = f(x) определена в некотором промежутке [a;b] и во внутренней точке этого промежутка с принимает наибольшее или наименьшее значение. Если в этой точке существует конечная производная, то она = 0. С ¹ a, с ¹ b, f(c) – max. Докажем, что f'(c) = 0. Т.к. f(c) - max, то для всех точек f(x) £ f(c) при xÎ[a;b] f(x) - f(c) £ 0 Т.к. по условию теоремы в точке с ф-я f имеет производную, то можно рассмотреть производную f'(c) = lim (f(x)-f(c))/(x-c) 1) x-c < 0 f’(c)³ 0ü Þ f’(c) = 0 2) x-c > 0 f’(c)£ 0þ

20. Теорема Ролля

Эта теорема позволяет отыскать критические точки, а затем с помощью достаточных условий исследовать ф-ю на экстремумы. Пусть 1) ф-я f(x) определена и непрерывна на некотором замкнутом промежутке [a;b]; 2) существует конечная производная, по крайней мере, в открытом промежутке (a;b); 3) на концах промежутка ф-я принимает равные значения f(a) = f(b). Тогда между точками a и b найдется такая точка с, что производная в этой точке будет = 0. Док-во: По теореме о свойстве ф-ий, непрерывных на отрезке, ф-я f(x) принимает на этом отрезке свое max и min значение. f(x1) = M – max , f(x2) = m – min ; x1;x2 Î [a;b] 1) Пусть M = m, т.е. m £ f(x) £ M Þ ф-я f(x) будет принимать на интервале от a до b постоянные значения, а Þ ее производная будет равна нулю. f’(x)=0 2) Пусть M>m Т.к. по условиям теоремы f(a) = f(b) Þ свое наименьшее или наибольшее значение ф-я будет принимать не на концах отрезка, а Þ будет принимать M или m во внутренней точке этого отрезка. Тогда по теореме Ферма f’(c)=0.

21. Теорема Лагранжа

Пусть 1) ф-я f(x) определена и непрерывна на интервале [a;b] 2) Существует конечная производная, по крайней мере, в открытом интервале (a;b). Тогда между a и b найдется такая точка с, что для нее выполняется следующее равенство: (f(b)-f(a))/(b-a)=f’(c), a < c< b Док-во: Введем вспомогательную ф-ю F(x). F(x) = f(x) - f(a) - [(f(b)-f(a))/(b-a)]*(x-a) Эта ф-я удовлетворяет всем условиям теоремы Ролля: 1) она непрерывна как разность между непрерывной и линейной функциями; 2) в открытом интервале (a;b) существует конечная производная этой ф-ии. F’(x) = f’(x) - (f(b)-f(a))/(b-a) 3) на концах промежутка в точках a и b эта ф-я равна 0 F(a) = f(a) - f(a) - (f(b)-f(a))/(b-a)*(а - а) = 0 F(b) = f(b) - f(a) - (f(b)-f(a))/(b-a)*(b-a) = 0 Þ производная в какой-либо внутренней точке с равна 0. F’(с) = 0 f’(c) - (f(b)-f(a))/(b-a) = 0, отсюда f’(c) = (f(b)-f(a))/(b-a) Геометрическое истолкование CB/AC = (f(b)-f(a))/(b-a) На дуге АВ найдется по крайней мере одна точка М, в которой касательная || хорде АВ. 22. Теорема Коши (обобщенная теорем о конечных приращениях) Пусть 1) существуют f(x) и g(x), которые непрерывны на [a;b] 2) существует f’(x), g’(x) в (a;b) Между а и b найдется точка с, такая, что выполняется равенство: (f(b)-f(a))/(g(b)-g(a)) = f’(c)/g’(c), a < c < b Применив к обеим функциям теорему Лагранжа и разделив полученные равенства, получим требуемое.

23. Свойства выпуклости (вогнутости).

График ф-ии яв-ся выпуклым на некот промеж, если все его точки леж. ниже люб касат, провед к этой кривой. Вогнутый - наоборот. f”(x)<0 f”(x)>0 Точка перегиба – точка, отделяющ выпук часть непрер прямой от вогнутой части. Необходимое условие - чтобы f”(x1)=0 Достаточное условие - смена знака второй производной при переходе через эту точку.

3. Интегральное исчисление функций одной переменной.

1. Первообразная.

Ф-я F(x) называется первообразной ф-и f(x) на множестве D, если для любого х из D:F’(x)=f(x). Если F(x) первообрзная ф-и f(x) на мн-ве D, то любую другую первообразную этой ф-и можно получить по формуле: Ф(х)=F(x)+c при некотором значение с. Док-во. Пусть F(x) – первообразная f(x), x принадлежит D: F’(x)=f(x). Пусть Ф(х) – другая первообразная f(x), x принадл. D: Ф’(x)=f(x). Составим ф-ю φ(х)=Ф(х)-F(х) – дифференцируема на мн-ве D → φ'(х)= Ф’(х)-F’(х)=f(x)-f(x)=0. По св-м ф-и, дифференцируемой на D → φ(х)=соnst.=c → Ф(х)-F(х)=с=const → Ф(х)=F(х)+с, что и т.д.

2. Неопределенный интеграл и его св-ва.

Опр. Совокупность всех первообразных для ф-и f(x) на множестве наз. Неопределенным интегралом этой функции. ∫f(x)dx=F(x)+c, f(x)- подинтегральная ф-я ,f(x)dx – подинтегральное выражение. Свойства. 1)[f(x)dx]’=f(x) док-во: ∫f(x)dx=F(x)+c(по опр.), (∫f(x)dx)’= (F(x)+c)’=F’(x)=f(x) 2) d[f(x)dx] = f(x)dx док-во: по опр. дифференциала: d[f(x)dx] = (f(x)dx)’dx=f(x)dx 3)∫dF(x)=F(x) +c док-во: ∫dF(x)=∫F’(x)dx=∫f(x)dx=F(x)+c. 4)Постоянный множитель можно выносить за знак неопред. Интеграла: ∫kf(x)dx=k∫f(x)dx ,x є D, k є R. док-во: покажем, что k∫f(x)dx – совокупность первообразных для ф-и k*f(x): По св-ву производной: (k∫f(x)dx)’=k*(∫f(x)dx)’=k*f(x). 5)∫[f(x)+(-)g(x)]dx = ∫f(x)dx +(-)∫g(x)dx/ Док-во: докажем, что ∫f(x)dx +(-)∫g(x)dx – первообразная для ф-и [f(x)+(-)g(x)]: По св-ву производной: [f(x)+(-)g(x)]’= [∫f(x)dx]’ +(-)[∫g(x)dx]’= f(x)+(-)g(x), что и т.д.

3 Табличные интегралы.

Таблица интегралов

1) ∫ 0 dx = C = const 11) ∫dx/(√1-x2 )= arcsin x + C = - arccos x + C 2) ∫dx = x + C 12) ∫dx/(1+x2) = arctg x + C = - arcctg x + C 3) ∫xadx = xa+1/(a+1) + C, 13) ∫tgxdx = - ln |cosx| + C a≠ -1 14) ∫ctgxdx = ln |sinx| + C 4) ∫dx/x = ln|x| + C 15) ∫ dx/(√a2- x2)=arcsinx/a +C=-arccos x/a + C 5) ∫exdx = ex + C 16) ∫dx/(a2+x2) = (1/a)arctg x/a + C=-(1/a)arcctg x/a + C 6) ∫axdx = ax/lnx + C 17) ∫dx/(x2–a2) = (1/2a) ln |(x-a)/(x+a)| + C 7) ∫cosx dx = sinx + C 18) ∫dx/(a 2-x2) = (1/2a) ln |(x+a)/(x-a)| + C 8) ∫sinxdx = - cosx + C 19) ∫dx/(√x2+A) = ln |x + (√x2+A)| + C 9) ∫dx/cos2x = tgx + C 20) ∫(√x2+A)dx = (x/2)(√x2+A) + (A/2) ln |x+(√x2+A)|+C 10) ∫dx/sin2x = - ctgx + C 21) ∫ (√a2- x2)dx = (a2/2) arcsin x/a + (x/2) (√a2- x2) + C

4. Метод замены переменной или метод подстановки

∫f(x)dx, x Î D Пусть x = φ(t), t Î T, φ(t) – дифференцируема на T и имеет обратную функцию Докажем, что ∫ f(x)dx = ∫f(φ(t)) • φ’(t)dt, т. е. докажем, что ∫f(x)dx – первообразная f(φ(t))•φ’(t) (∫f(x)dx)t’(по правилу дифференцирования сложной функции) = (∫f(x)dx)x’ • x’t = f(x)•φ’(t) = f(φ(t))•φ’(t) ∫ f(x)dx = ∫f(φ(t)) • φ’(t)dt – формула замены переменной в неопределенном интеграле

5. Метод интегрирования по частям

Пусть u = u(x), v = v(x) – дифференцируемы на D d(u•v) = du•v + u•dv Þ ∫ d(u•v) = ∫du•v + ∫u•dv Þ u•v = ∫v•du + ∫u•dv Þ ∫u•dv = u•v - ∫v•du – формула интегрирования по частям Применение данной формулы: 1. Pn (x)•φ(x)dx; Pn (x) – многочлен n-ой степени а) φ(x) = sin ax u = Pn (x); dv = φ(x)dx cos ax eKx b) φ(x) = обратные тригонометрические функции u = φ(x); dv = Pn (x)dx logax 2. ekx•sin ax dx в этом случае любой из множителей можно принять ekx•cos ax dx за u 5. Интегрирование рациональных дробей. Интегрирование некоторых классов иррациональных и трансцендентных функций. (конкретные числовые примеры по данному вопросу см. в лекции за 21.03.00) Рассмотрим интегал вида òR(x)dx, где R(x) – рациональная функция, т.е функция, которую можно представить в виде отношения двух многочленов R(x)=P(x)/Q(x). Если эта дробь неправильная, то можно выполнить деление с остатком и представить R(x) в виде суммы некоторого многочлена и правильной дроби. Теорема. Всякая правильная дробь может быть представлена как сумма простейших дробей вида A ; A ; Mx+N ; Mx+N . x-a (x-a)n x2+px+q (x2+px+q)n , где A,M,N,a,p,q – действительные числа. Непростейшие дроби. Лемма 1. Пусть F(x)/Q(x) – правильная дробь. Если х=а- корень Q(x) кратности К,т.е. Q(x)=(x-a)K*Q1(x), где Q 1(a) не равно нулю, то F(x)= AK+ F1(x) Q(x) (x-a)K Q1(x)*(x-a)K-1 Лемма 2. Пусть F(x)/Q(x) – правильная дробь. Если Q(x)=(x2+px+q)K*Q1(x) Þ F(x) =MKx+NK + F1(x) . Q(x) (x2+px+q)K (x2+px+q)K-1*Q1(x) Теорема разложения правилоной дроби на простейшие. Пусть F(x)/Q(x) – правильная дробь. Если Q(x)=(x-a)a(x-b)b*. *(x-c)g(x2+p1x+q1)K *.*(x2+p2x+q2)m Þ эта дробь разлагается в сумму простейших дробей следующего вида: F(x) = Aa+ Aa-1+.+ A1+ Bb+ Bb-1+.+ B1+ Cg+ Cg-1+.+ C1+ Q(x) (x-a)a (x-a) a-1 x-a (x-b)b (x-b) b-1 x-b (x-c)g (x-c) g -1 x-c + MKx+NK + MK-1x+NK-1+.+ M1x+N1+ Cmx+Dm + Cm-1x+Dm-1+.+ C1x+D1 (x2+p1x+q1)K (x2+p 1x+q1)K-1 x2+p1x+q 1 (x2+p2x+q2)m (x2 +p2x+q2)m-1 x2+p2x+q 2 Интегрирование иррациональных и трансцендентных функций. Трансцендентная функция – аналитическая функция, не являющаяся алгебраической. (Например, показательная функция тригонометрической функции.) òR(x,xm1/n1,.xmk/nk)dx, где R – рациональная функция от х и её дробных степеней. Такой интеграл может быть решён с помощью замены степени с дробным показателем на степень функции с целым показателем. (подробнее см. в лекциях) . òR(x,ÖAx2+Bx+C )dx Под корнем выделяется полный квадрат и решается с помощью замены переменной. . . òdx/Ö Ax2+Bx+C , òÖ Ax2+Bx+C dx 6. Формула Ньютона-Лейбница, ее применение для вычисления определенных интегралов. Теорема. Пусть функция у=f(х) непрерывна на отрезке [а, b] и F(х) – первообразная для f(х).Тогда (*) Доказательство: Поскольку функция f(х) непрерывна на отрезке [а, b], то она интегрируема на этом отрезке и имеет первообразную на этом отрезке. Проверим справедливость формулы (*). Действительно, подставляя х=b, получим а подставляя х=а, получим поэтому Если F(х) – другая первообразная для функции f(х), то выполняется равенство F(х)= Ф(х)+С. Имеем F(b)-F(a)=(Ф(b)+C)-(Ф(а)+С)=Ф(b)-Ф(а) что завершает доказательство формулы (*). Разность F(b)-F(a) часто записывают в виде и формула Ньютона-Лейбница в этом случае принимает следующий вид: (**) Мы доказали формулу для случая, когда f(х) непрерывная на [а, b] функция. В действительности эта формула справедлива для любой функции f(х) , имеющей первообразную F(x)/ Формулу (**) обычно называют основной формулой интегрального исчисления. она позволяет сводить нахождение определенного интеграла к нахождению первообразной.

7. Несобственые интегралы с бесконечными пределами.

Пусть y=f(x) определена и непрерывна на промежутке [a;+∞], интегрируема на любом [a;b] (b>a). Сущ-т ∫ab f(x)dx для любого b>a. Обозначим ∫ab f(x)dx = Ф(b). Несобственным интегралом с бесконечным верхним пределом от ф-и y=f(x) мы назовем предел вида ∫a f(x)dx=lim Ф(b) при b→+∞. Этот инт-л наз. Сходящимся, если предел ф-и lim Ф(b) при b→+∞ сущ-т и конечен. В противном случае он наз расходящимся. Аналогично определяем несобственный инт-л с бесконечным нижним пределом . Пусть y=f(x) определена и непрерывна на промежутке (-∞;в], интегрируема на любом [a;b] (a<b). Сущ-т ∫ab f(x)dx для любого a<b, Обозначим ∫ab f(x)dx = Ф(a), ∫-∞b f(x)dx = lim Ф(a) при а→–∞. Этот инт-л наз сходящимся, если предел сущ-т и конечен, в противном случае – расходящимся. Несобственный инт-л с бесконечными нижним и верхним пределами.-∞ f(x)dx y=f(x) опред-на и непрерывна на (–∞;∞) и интегрируема для любого [а;b]. Возьмем произвольную точку с на (–∞;∞). Имеем: ∫ -∞ f(x)dx = ∫-∞с f(x)dx + + ∫с f(x)dx (1) Если сущ-т несобственные интеграл с бесконеч. Верхним пределом и несоб. Инт-л с бесконечным нижним пределом, и они оба сходятся, то сходится и несобственный интеграл с бесконечным верхним и нижним пределом. В этом случае сумма (1) не зависит от выбора точки с. Геометрич. смысл несобственного интеграла. Пусть y=f(x) неотрицат. Непрерывная на [a;b). Для каждого b>a определенный инт-л ∫ab f(x)dx = S aABb. Мысленно перемещая Bb вправо, получим ∫a f(x)dx=SaA∞.
A B a b

8. Несобственные интегралы от неограниченных ф-й.

Если сущ-т интеграл ∫ab f(x)dx, то y=f(x) ограничена (но обратно это не обязательно). 1).Опр. Точка х=в наз. Особой точкой ф-и y=f(x), если в любой окрестности этой точки ф-я не ограничена, но ограничена на любом отрезке [a;в-ε], ε>0. Опр. Пусть ф-я y=f(x) не ограничена на [а;в], но интегрируема на любом меньшем отрезке [a;в-ε], ε>0, тогда если сущ-т конечный предел lim ∫ab - ε f(x)dx при ε→0+0, то его принимают за несобственный интеграл ∫ ab f(x)dx от неограниченной ф-и f(x). Если предел сущ-т и конечен, то инт-л сходится, в противном случае он расходится. 2).Аналогично, Если точка а – особая: ∫ab f(x)dx = lim ∫ a b f(x)dx, при ε→0+0 3). Пусть с –единственная внутренняя особая точка на [а;в]. Если сходятся ∫aс f(x)dx и ∫сb f(x)dx, то получим несобственный интеграл ab f(x)dx= ∫aс f(x)dx + ∫сb f(x)dx (2) Если особых точек на отрезке [а;в] несколько, то отрезок разбивают, чтобы в каждом получившемся отрезке было не более одной особой точки и используют (2). Пусть F(x) – первообразная для y=f(x), F(a+0)=lim F(a+ε),ε→0+0, F(b-0)=lim F(b-ε),ε→0+0 (если эти пределы сущ-т). Тогда: ab f(x)dx= F(b-0)- F(a+0) Если y=f(x) непрерывна, то ab f(x)dx= F(b)- F(a) 4. Дифференциалльное исчисление функций нескольких переменных.

1 Множество в Rn: открытые, замкнутые, ограниченные, выпуклые. Компактность. Функции нескольких переменных. Предел и непрерывность функции. Функции, непрерывные на компактах. Промежуточные значения непрерывных функций на линейно связных множествах.

Пусть р0 – точка в Rn и ε – положительное число. Открытым шарам или просто шаром радиуса ε с центром в точке р 0 называется множество всех точек, расстояние которых от р0 меньше ε. {р Î Rn| ρ(p0, p) < ε}. Множество X Ì Rn называется ограниченным, если оно целиком содержится в некотором шаре. Пусть Х – множество в пространстве Rn. Точка р Î Х называется: внутренней точкой множества Х, если существует шар B(p,r), все точки которого принадлежат Х; внешней точкой по отношению к Х, если существует шар B(p,r), ни одна точка которого не принадлежит Х; граничной точкой для Х, если она не является ни внутренней, ни внешней точкой Х, иначе говоря, если любой шар с центром р содержит как точки, принадлежащие Х, так и точки, не принадлежащие Х Множество Х называется открытым, если его точки внутренние. Множество Х называется замкнутым, если оно содержит все свои граничные точки. Выпуклое множество – часть плоскости, обладающая тем свойством, что соединяющий две любые точки отрезок содержится в ней целиком. Пусть Х – множество в Rn. Точка р0 называется предельной для Х, если в любой окрестности точки р0 (любом шаре B(p0, ε)) имеются точки множества Х, отличные от р0. Топология – раздел математики, изучающий топологические свойства фигур, т.е. свойства не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний. Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную плоскость и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т. к. эти линии могут быть деформированы одна в другую описанным выше способом. В то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо – двумя. Компактность – одно из основных понятий топологии. Множество называется компактным, если любая бесконечная последовательность его точек (элементов) имеет хотя бы одну предельную точку, принадлежащую этому множеству. Например, на плоскости компактными являются ограниченные, замкнутые множества и только они. Правило, по которому каждой точке x (x1, x2,., xn ) Î X (X Ì Rn) ставится в соответствие единственное действительное число y Î E (E Ì R) называется функцией n переменных. X Ì Rn – область определения функции E Ì R – множество значений функции. Пусть на множестве X Ì Rn задана функция f и пусть р0 – предельная точка для Х. Число а называется пределом функции f в точке р0, если для любой сходящейся к р0 последовательности {р n}, где все рn ≠ pa, соответствующая числовая последовательность {f(pn)} сходится к числу а. (lim f(p) = a) P®Po Функция f, определенная на множестве Х Ì Rn, называется непрерывной в точке p0 Î X, если lim f(p) = f(p0 ), а также если р0 – изолированная точка P®Po множества Х. 2 Частные производные. Дифференциал, его связь с частными производными. Геометрический смысл частных производных и дифференциала. Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращения функции к приращению соответствующией независимой переменной, когда это приращение стремится к нулю. Величина Dz=f(x0+Dx,y0+Dy)-f(x0,y0) (одновременное изменение величин х и у) называется полным приращением функции z в точке (x0,y0).Так же, как и в случае одной переменной возникает задача о приближённой замене приращения Dz( которая, как правило, является нелинейной функцией от Dх и Dу) на линейную функцию от Dх и Dу. Роль линейного приближения выполняет полный дифференциал функции, который определяется как сумма произведений частных производных функций на приращения независимых переменных. Так, в случае функции от двух переменных полный дифференциал определяется равенством dz=z¢xDx+z¢ yDy. Следует помнить, что в различных точках (х0, у0 ) дифференциал будет различным. Функция называется дифференцируемой в точке (х0, у0 ), если её полное приращение можно представить в виде Dz=f(x,y)- f(х0 , у0)=fx¢(х0, у0)Dx+fy ¢(х0, у0)Dy+ep или, короче, Dz=dz+ep, где e=e(Dх, Dу) – функция бесконечно малая при Dх® 0,Dу®0; Геометрический смысл. . р=Ö(Dх)2+(Dу)2 - расстояние от точки (х,у) до точки (х00). Дифференцируемость функции z=f(z,y) в точке (х00) предполагает наличие производных z¢x и z¢y в этой точке. Поэтому, если хотя бы одна из указанных производных не существует , то функция не является дифференцируемой в точке (х00). Запишем линейный аналог уравнения, отбросив слагаемое eр: z-f(х00)=f¢x00 )(x-x0)+f¢y00)(y-y0 ). Это уравнение в коотдинатах x,y,z задаёт плоскость, которая называется касательной плоскостью к графику функции f(x,y) в точке (М(х0 0), f(х00)). (можно доказать, что для любой последовательности точек {N1,N2 ,.}, принадлежащих графику функции z=f(x,y) ( и отличных от М), угол между прямой MN1 и касательной плоскостью стремится к нулю. (Теорема Если функция z=f(x) дифференцируема в точке (х00), то она непрерывна в этой точке.)

3. Производная по направлению. Градиент.

Пусть l=(lx;ly) – произвольный единичный вектор, т.е. такой вектор, что . |l|=Ölx2+ly2=1 Производной функции f(x,y) в точке00) по направлению вектора l называется предел df(х00) =lim f(х0+tlx0+tly)- f(х00) dl t®0+0 t Говорят также, что df(х00)/dl – это скорость изменения функции в точке (х00) в направлении вектора l. Градиентом функции в точкеМ называется вектор, координаты которого равны соответствующим частным производным данной функции в точке М. Пример для функции от двух перменных. f(x,y) grad f(M)=(fx¢(M);fy¢(M)). Градиент можно записать короче. df(M)(grad f(M),l) dl где (grad f(M),l) – скалярное произведение векторов. [(grad f(M),l)=|grad f(M)|*|l|cosj, l – единичный вектор] Ни количество аргументов функции f, ни длина вектора l не играет существенного значения при выводе формулы. Вывод.Градиент указывает направление наискорейшего роста функции, а максимальная скорость роста равна модулю градиента.

4 Однородные функции. Формула Эйлера.

Опр. Пусть D Ì Rn – область в Rn, содержащая вместе с каждой своей точкой (х1, х2,., х n) и все точки вида (tх1, tх2,., tхn) при t >0. Функция f(х1,., хn) c такой областью определения D называется однородной степени a, если для любого t >0 выполняется равенство: f (tх1,., tхn)= t a f1,., хn). Степень однородности a может быть любым действительным числом. Например, функция является однородной функцией степени 2π от переменных х и у. Предположим, что дифференцируемая функция f (х, у) является одновременно и и однородной функцией степени a. Фиксируя произвольную точку (х, у) для любого t >0, имеем f (tх, tу)= ta f (х, у). Продифференцируем левую и правую части этого равенства по t (левую часть - по правилу диф-я сложной функции, правую часть – как степенную функцию). В результате приходим к тождеству: f 'x (tх, tу)х+ f 'y (tх, tу)y =a ta-1 f (х, у) Положив t=1 , получим формулу Эйлера: f 'x (х, у)х+ f 'y (х, у)y =a f (х, у) Аналогично записывается формула Эйлера для однородной функции от любого числа аргументов. Например, для функции трех переменных она выглядит следующим образом: f 'x (х, у,z)х+ f 'y (х, у,z)y + f 'z (х, у,z)z =a f (х, у, z) или и 'x x + и 'y y+ и 'z z=a и (*) Предположим, что функция и= f (х, у,z) не обращается в 0 в некоторой точке (х0, у0,z0). Разделив тогда левую и правую части равенства (*) на значение функции в этой точке, получим формулу: Е их + Е иу + Е иz=a где Е их, Е иу., Е иz – коэффициенты эластичности и по х, по у, по z в точке (х0, у0,z0 ). 5. Производственные функции и функции полезности. Изокосты, изокванты и линии безразличия. Производственные ф-и – экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ может устанавливать зависимость объема продукции от наличия или потребления ресурсов – ф-я выпуска, наряду с которыми исп-ся как бы обратные к ним ф-и зависимости затрат рес-в от объемов выпуска продукции. Частными случаями ПФ. Явл. ф-я издержек (связь объема продукции и издержек пр-ва), ф-я капитальных затрат (завис-ть капиталовложений от производственной мощности предприятия). Наиболее важные из мат. Форм ПФ: Линейная ПФ: Р=а1х12х2+.+аnxn, где а1, а2,.. - факторы пр-ва. Ф-я Кобба-Дугласа: N=A*Lα*Kβ , где N- национальный доход страны, L и K- соответственно объемы приложенного труда и капитала. Ф-я CES: P=A[(1-a)K-b +aL-b] -c/ b Ф-я полезности показывает зависимость эффекта некоторого действия от интенсивности этого дей-я. Общий вид: u=u(x1,.xn), x 1,.xn- факторы, влияющие на полезность u. ФП может служить моделью поведения потребителей благ и услуг в обществе и рассматриваться как целевая ф-я потребления: v=v(с1,.сm), с1,.- количества благ. Потребители стремятся максимизировать эту ф-ю. Мат. Св-во ф-и: она должна иметь положительную первую производную, что означает: при увеличении объема благ увеличивается и полезность. Выбирая между разными наборами благ потребитель предпочтет те, чья полезность больше, поэтому ФП часто наз ф-й предпочтений. Изокосты – геометрическое место точек (в пространстве ресурсов), для которых издержки пр-ва постоянны. В случае двух видов затрат И. Представляют собой параллельные прямые с наклоном, который равен отношению цен к затратам каждого вида (взятому с отрицательным знаком), что вытекает из формулы издержек: С=р1х12х2, р1,р2 – цены, х1,х2 – объемы затрат каждого вида. Х2 1 2 Х1 Изокванта – геометрическое место точек, в которых разные сочетания факторов пр-ва (ресурсов) дают одно и то же кол-во выпускаемой продукции. Кривизна И. Характеризует эластичность замещения между затратами этих факторов. Вид изокванты для двух видов взаимозаменяемых ресурсов:
Х2 q1 Х22 q2 Х21 q1 Осн. Св-ва: 1) Никогда не пересекаются друг с другом 2) Большему выпуску продукции соответствует более удаленная от начала координат изокванта 3) Если все ресурсы абсолютно необходимы для произ-ва, то И. Не имеют общих точек с осями координат, 4) При увеличении затрат одного ресурса объем произ-ва можно сохранить на том же уровне при уменьшении затрат др. рес. В случае отсутствия возможности замены рес-в И. Приобретают вид (рис. 1) при постоянном соотношении затрат и при изменяющемся соотношении затрат (рис.2) Х2 Х2 Х1 Х1 Рис.1 Рис2 Кривые безразличия – геометрическое место точек ( пространства товаров), характеризующихся состоянием безразличия с точки зрения потребителя или производителя. Это графическая иллюстрация взаимозаменяемости товаров. Применяется для анализа спрса и потребления, а также др. эк. Явлений. Отложим по оси 0Х кол-во 1-го блага, ОУ-другого. Кривая безразличия соединяет все толчки, отражающие такие комбинации, что покупателю безразлично, что покупать. Если построить много кривых безразличия, то получится карта безразличия. Св-ва: 1) К.Б. имеют отрицат. Наклон, крутизна которого показывает предельную норму замещения 1-го товара дру-гим. 2) Кривые никогда не пересекаются 3) Кривые выпуклы к началу координат (их абсолютный наклон уменьшается при движении по ним вправо). У c y1 У2 А Y3 Х1 Х2 Х3 Х

6. Неявные функции

Пусть переменная u, является функцией переменных х1, х2,., хn, задается посредством функционального уравнения F (х1, х2,., хn, u) = 0. В этом случае говорят, что u как функция аргументов х1, х2,., хn задана неявно, а саму функцию u называют неявной функцией. Неявные функции могут задаваться и посредством системы функциональных уравнений. Производная функции y = y(x), заданной неявно уравнением F(x,y) = 0, где F(x, y) – диффиренцируемая функция переменных x и y, может быть вычислена по формуле: y’ = - F’x / F’y При условии, что F’y ≠ 0. Аналогично частные производные неявной функции двух переменных u = (х1, х2), заданной с помощью уравнения F(х1, х 2, u) = 0, где F(х1, х2, u) – дифференцируемая функция переменных х1, х2, u могут быть вычислены по формулам: ∂u / ∂x1 = - F’x1 / F’u, ∂u / ∂x2 = - F’x2 / F’u. 7. Теоремы существования решений системы функциональных уравнений. Пусть m функций F11,., хn , u1,., um); F21,., хn , u1,., um); ......... Fm1,., хn , u1,., um) Дифференцируемы в некоторой окрестности точки a = (х10,., хn0, u10,., um0) евклидова пространства Rn+m, причем частные производные этих функций по переменным u1,., um непрерывны в точке a. Тогда если все функции F1,.,Fm обращаются в нуль в точке a, якобиан D(F1,.,Fm) / D(u1,.,um) отличен от нуля в этой точке, то найдется окрестность точки (х10, х 20,., хn0), в которой существует единственные m функции u1 = f11, х2 ,., хn), u2 = f21, х2 ,.,хn), ., um = fm1, х2 ,., хn), являющиеся решениями системы F11,., хn , u1,., um) = 0; F21,., хn , u1,., um) = 0; ......... Fm1,., хn , u1,., um) = 0, Причем это решение непрерывно и дифференцируемо в указанной окрестности точки (х 10,., хn0). При этом ∂fk / ∂xj = - D(F1,.,Fm) / D(u1,.,uk-1, xj, uk +1,., um) : D(F1,.,Fm) / D(u1,.,um ). Выражения для частных производных второго и последующих порядков, при условии их существования, можно получить посредством дифференцирования этих формул. 8. Теоремы существования решений функционального уравнения. Пусть функция F(х1, х2,., хn , u) непрерывна на области D евклидова пространства Rn+1, F(х1 0, х20,., хn 0, u0) = 0; (∂F / ∂u) (х10, х20 ,., хn 0, u0) ≠ 0 (точка (х1 0, х20,., хn 0, u0) Î D). Тогда существует окрестность указанной точки, в которой уравнение F(х1,., хn , u) = 0 однозначно разрешимо, причем решение u = f(х1, х2,., хn ) непрерывно в этой окрестности. Если, кроме условий, оговоренных выше, функция F дифференцируема в окрестности точки (х10, х20,., х n 0, u0) и ∂F / ∂u непрерывна в этой точке, то решение u = f(х1, х2,., хn ) дифференцируемо в окрестности рассматриваемой точки, причем ∂f / ∂xk = - ∂F / ∂xk : ∂F / ∂u, k = 1,2,.,n. Частные производные второго и более высоких порядков, при условии их существования, могут быть найдены посредством дифференцирования формул для частных производных первого порядка. 9 Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Точка М0 называется точкой локального максимума (минимума) функции f(x,y), если существует такая окрестность точки М0, в которой для любой точки М(х,у) выполняется неравенство f(M)£f(M0) (f(M)³f(M0)). Точки локального экстремума называются просто точками экстремума. Необходимое условие существования экстремума.Если функция f(x,y) имеет частные производные первого порядка в точке локального экстремума М 000), то f¢x(M0 )=f¢y(M0)=0. Доказательство.Рассмотрим сначала функцию одной переменной f(x,y0 ). Производная этой функции совпадает с частной производной f¢x (x,y0), а сама функция имеет локальный экстремум в точке х0 . Следовательно, производная функция f(x,y0) в точке х0 равна нулю, т.е. f¢х(x,y0)=0. Аналогично функция от одной переменной f(x,y0) имеет локальный экстремум в точке у=у0 . Следовательно, её производная в этой точке равна нулю, т.е. f¢у (x,y0)=0. Равенство частных производных нулю выражает лишь необходимое, но не достаточное условие существования экстремум. Точки, в которых частные производные равны нулю или не существуют, называют критическими точками. Достаточное условие существования экстремума. Пусть функция f(x,y) имеет непрерывные частные производные второго порядка в некоторой окрестности стационарной точки М0(x0,y0). Положим D= f¢¢xx(M0)f¢¢yy(M0 ) – (f¢¢xy(M0)2. тогда : 1. если D>0, то в точке М0 функция имеет локальный экстремум, причём f¢¢xx(M0)<0 – локальный максимум, при f¢¢xx(M0)>0 – локальный минимум; 2. если D<0, то в точке М0 нет экстремума. 3. если D=0, то требуются дополнительные исследования. (в лекциях 2-го семестра доказательства не приводилось, если есть большая тяга к знаниям, то см учебник стр 182-185). 10. Наибольшее и наименьшее значения функции на ограниченном замкнутом множестве. Схема исследования функции на экстремум. 1.x, z¢y 2. Найти критические точки. z¢x=0, z¢y=0 3. Взять производные z¢¢xx,z¢¢yy,z¢¢xy,z¢¢yx. 4. C помощью условия существования экстремум сделать вывод. Теорема Вейерштрасса.Если функция z=f(x,y) непрерывна на замкнутом, ограниченном множестве, то на этом множестве функция принимает наибольшее и наименьшее значение. Правило нахождения максимума и минимума для функции от двух переменных. 1. Найти ОДЗ и обедиться, что оно замкнутое и ограниченное. 2. Исследовать на экстремум, вычислить значение функции. 3. Вычислить значения функции на границах ОДЗ. 4. Из всех значений выбрать наибольшее и наименьшее.

11. Метод наименьших квадратов.

(рассмотрим для двух величин, остальные аналогично0Пусть (Х,У) – система двух случайных величин. Задача – исследовать связь между Х и У. М(У/Х=х) – условные математические ожидания случайной величины У при условии, что Х=х (х – фиксированное число) М(У/Х=х)=f(x). Уравнение y=f(x) называется уравнением регрессии СВ У на СВ Ч. Будем приближать функцию y=f(x) к прямой y=kx+b, т.е. попытаемся подобрать k,b так, чтобы y=kx+b как можно лучше апроксимировать функцию y=f(x). В качестве прямой y=kx+b предлагается выбрать ту, на которую лучше всего «ложаться» экспериментальные точки. у1=kx 1+b Þ Е21= (y1-(kx1+b)) 2 характеризует степень удалённости точки (х11) от прямой y=kx+b Е22= (y2-(kx2+b)) 2 и т.д. Естественный критерий, характеризующий близость всей совокупности точек к прямой y=kx+b К=åni=1E2i . К=к(к,b) – функция двух переменных. Найдём такие к*,b*, которые минимизируют значение К. К(к,b)= åni=1(yi-(kxi+b))2 Необходимое условие экстремума. DК/Dк=0; DК/Db=0 DК/Dк=åni=12(yi-(kxi+b))(-хi)=0 kåni=1 хi2+båni=1 хini=1 хi yi ; DК/Db=åni=12(yi-(kxi+b))(-1)=0 åni=1 yi -kåni=1 хi-nb=0. íìni=1 хi2+båni=1 хini=1 хi yi î kåni=1 хi+nb=åni=1 yi cистема двух линейных уравнений с двумя неизвестными к и b.

12. Выпуклые функции в Rn и их свойства.

Отрезок в Rn с концами a, b Î Rn – это множество точек х (t)= (1-t) a + t b, где t произвольное число из промежутка [0; 1]. Отрезок с концами a, b обозначается [ a, b ]. Отрезок [ a, b ] совпадает с множеством точек в Rn , представимых в виде с = aа + bb , где a,b - произвольные неотрицательные числа такие, что a+b=1. Множество Р Ì Rn называется выпуклым , если вместе с любыми двумя точками a, bÎР оно содержит и весь отрезок [ a, b ]. Функция n переменных f (х), определенная на выпуклом множестве РÌRn , называется выпуклой, если для любых двух точек a, b Î Р и любых двух чисел a,bÎ[0; 1] таких, что a+b=1, выполняется неравенство f (aа + bb) ≤ a f (а) + b f (b) Для непрерывной функции, заданной на выпуклом множестве Р , следующие условия равносильны: 1) f выпукла; Неравенство из пункта 4 называется неравенством Йесена. выпуклая функция наз. строго выпуклой, если неравенство f (aа + bb) ≤ a f (а) + b f (b) строгое при всех a, b из области определения функции и α,β ≥0 таких, что α+β=1. Функция f наз. (строго) вогнутой, если –f (строго) выпукла, т.е. f (aа + bb)a f (а) + b f (b) Линейная функция f(x)=(c,x)+c0 одновременно выпукла и вогнута, но не строго. Свойства выпуклых функций. 1. функция с выпуклой областью определения Р Ì Rn выпукла тогда и только тогда, когда выпукло множество Нf ={(х,у):хÎР, у≥f(x)} (из Rn+1) называемое надграфиком функции f(x). 2. Если f(x) выпукла, то функция αf(x) выпукла при α>0 и вогнута при α<0. 3. Если f(x) выпукла на Р, то множество Uf (α)={х:f(x) α} выпукло при любом α. (обратное утверждение неверно). 4. Сумма любого числа выпуклых функций на множестве Р Ì Rn выпуклана Р , если при этом хотя бы одна из суммируемых функций строго выпукла, то вся сумма строго выпукла. 5. Пусть Р Ì Rn – выпуклое множество, и для каждого i=1,2,.k пусть li(x) – линейная функция n переменных , а fi(t) – функция одной переменной , выпуклая на li (Р). Тогда функция F(х)=f1 ( l1(x))+.+ fК ( lК(x)) выпукла на Р. При этом, если все функции fi (t) строго выпуклы и любая точка однозначно определяется набором ( l 1(а)+.+ lК(а)), то F(х) строго выпукла. 6. Пусть f выпукла на Р Ì Rn , а φ(t) – возрастающая выпуклая функция на множестве f(Р) ÌR, тогда F(х)= φ(f(x)) выпукла на Р. Если f(x) строго выпукла, то и F(х) строго выпукла. 7. Дифференциируемая функция f(x) выпукла на множестве Р Ì Rn тогда и только тогда, когда (grad f(a), b-a) f(b)-f(a) для любых a,bÎР 8. Пусть f(x) – функция, непрерывная на отрезке [ a, b ]ÌR и дважды дифференциируемая на (a, b). Для выпуклости функции f (x) на [ a, b ] необходимо и достаточно выполнение неравенства (x)≥0 для всех tÎ (a, b). Для строгой выпуклости f(x) добавляется условие (x)≠0 ни на одном интервале, содержащемся в (a, b). 9. Пусть D – выпуклое открытое множество в пространстве Rn, f(x)=f (x1,.,хn) – функция, имеющая в D непрерывные частные производные второго порядка. Для каждой точки хÎ D положим и составим матрицу C=Cij(X). Функция f(x) строго выпукла на множестве D , если в каждой точке хÎ D выполняются следующие неравенства
111>0, ., ∆n=det c>0 Экстремальные значения выпуклых и вогнутых функций. 1.Если х* - точка локального минимума (максимума) выпуклой (вогнутой) функции f(x) на выпуклом множестве Р Ì Rn то f(x*) – наименьшее (наибольшее) значение f(x) на Р. Если f(x) строго выпукла (вогнута), то х* - единственная точка глобального экстремума. 2.Пусть f(x) – выпуклая (вогнутая) функция на выпуклом множестве Р Ì Rn и пусть grad f(x*)=0. Тогда х* -точка глобального минимума (максимума) f(x) на Р.

13. Множители Лагранжа и теорема Куна-Таккера.

рассмотрим следующую задачу, называемую задачей вогнутого программирования: найти точку глобального максимума вогнутой функции f(x) на выпуклом множестве Р Ì Rn , заданном системой неравенств: ó g1(x)³0, î .... ì g s(x)³0 ì g s(x)³0 î x³0 где g1(х),., g s(x) – вогнутые функции. для решения вводят функцию Лагранжа F(x,l)=f(x)+l1 g1(x)+.+l s g s(x), где l=(l1,.,l s) – вектор множителей Лагранжа. Предположим, что все функции дифференциируемы и существует точка х³0, для которой все тривиальные неравенства из системы уравнений строгие. Точка х*³0 является точкой глобального максимума f (x) на Р в том случае, когда существует вектор l*=(l*1,., l*s)³0, такой, что выполняются условия: gradxF(x*, l*)£0; (gradxF(x*, l*);х*)=0 gradlF(x*, l*)³0 (gradlF(x*, l*);l*)=0 Эти условия означают, что точка (x*, l*) является седловой точкой функции F(x, l), т.е. F(x, l*)£ F(x*, l*)£ F(x*, l)

5. Числове и функциональные ряды.

1. Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости. Действия с рядами. Числовым рядом наз-ся бесконечная последовательность чисел, соединенная знаком сложения: а1+а2+.+ак +.=∑к=1ак. Где а1,.,ак- члены числового ряда Введем след. Обозначения: Sк = ∑к=1каi = а1+а2+.+ак - n-ая частичная сумма числового ряда: к=1, то Sк=а1,к=2, то Sк=а1+а2,.к: Sк = а1+а2+.+ак, т.е. видно, что частичная сумма образует числ. Последовательность. Числ ряд наз сходящимся, и его сумма в этом случае будет равна S, если сущ-т конечные предел последовательности частичных сумм, котрый равен S: LimSk=S, k→∞. В противном случае числ ряд расходится. Св-ва сходящихся числ. Рядов. Рассмотрим 2 числ ряда: а1+а2+.+ак +.=∑к=1ак. (1) в1+в2+.+вк +.=∑к=1вк ( 2) Опр. 1).Суммой этих рядов наз ряд. Каждый член которого равен сумме соответствующих членов рядов (1) и (2). 2) Ряд , каждый член которого равен произведению соответствующего члена ряда (1) на одно и то же действительное число, наз произведением ряда на действительное число λ. Св-ва. 1)Если ряд (2) сходится, и его сумма равна S, тогда произведение этого ряда на действительное число также сходится, и его сумма будет равна λS. Док-во: Пусть Sk- частичная сумма ряда (2), sk - частичная сумма ряда λ в1+ λ в2+.+λ вк +., ясно, что λ Sk = sk. Переходя к пределу, получим: Lim sk=lim λSk= λlimSk= λS(k→∞) 2)Если ряды (1) и (2) сходятся, и их суммы соответственно равны S, S’, то ряд из определения 1) (назовем его (3)) также сходится, а его сумма будет равна S+S’. Док-во: Qk=Sk+Tk, где Qk, Sk,Tk – сответственно частич суммы рядо (1), (2), (3). Переходя к пределу при k→∞, получаем, что сущ-т LimQk и Q=S+T 3)Если ряд сходится, то ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов также сходится. Док-во: Рассмотрим, когда отбрасывают первые n членов. Оставшийся ряд аn+1 +аn+2+. наз остатком исходного ряда (1). Пусть Сn- сумма первых n членов, Sk -частичная сумма исх. Ряда,S’k - частичная сумма остатка, при k>n: Sk = Cn+S’k Если сущ-т предел lim Sk k→∞, то сущ-т и предел lim S’k и наоборот. В частности, выполняется равенство: S=S’+Cn 4)Если ряд (1) сходится, то сходится и любой ряд. Полученный из него группировкой слагаемых, причем суммы обоих рядов одинаковы. Необходимое усл-е сходимости. Теорема. Если ряд (1) сходится, то предел его общего члена при к →∞ равен 0. lim ak=0 Док-во. 1){Sk=a1+a2+.+ak {Sk-1=a1+a2+.+ak-1, значит ак=Sk-Sk-1 2)Поскольку ряд сходится, то lim Sk = S, k→∞ 3) k→∞: lim ak= lim Sk- lim Sk-1 = S- lim Sk-1= S-S=0 ((k- 1)→∞) Следствие: если lim ak≠0 или не сущ-т, то ряд расходится. Сформулированный признак явл. необходимым усл-м и не явл достаточным, чтобы ряд сходился. 2 Ряды с неотрицательными членами. Признаки сходимости (сравнения, Даламбера, интегральный) Пусть a1 + a2 + . + an + = n=1S ¥ an = Sn – числовой ряд, каждый член которого положителен. Такой ряд называется рядом с положительными членами или просто положительным числовым рядом. S1 = a1 > 0, S2 = a1 + a2> 0, {Sn}- возрастающая числовая последовательность Признаки сходимости положительных числовых рядов. Для того, чтобы положительный ряд сходился необходимо и достаточно, чтобы последовательность его частных сумм была ограничена.

Признаки сравнения

Пусть заданы два положительных числовых ряда: u1 + u2 + . + un + = n=1S¥ un , un > 0 для " n v1 + v2 + . + vn + = n=1S¥ vn , vn > 0 для " n 1) Если "n Î N: un £ vn и ряд n=1S¥ vn – сходится, то и ряд n=1S¥ un – сходится. Если "n Î N: un £ vn и ряд n=1 S¥ un – расходится, то и ряд n=1S ¥ vn – расходится. 2) Если $ lim un/vn = k, то ряды либо одновременно сходятся, либо n ® ¥ k = const одновременно расходятся. Признак сходимости Даламбера. Если n=1S¥ un – положительный ряд, для которого lim un+1/un = L, то n ® ¥ 1) при L < 1 ряд сходится 2) при L > 1 ряд расходится 3) при L = 1 необходимы дополнительные исследования. Интегральный признак сходимости. Теорема. Пусть n=1S¥un - положительный ряд, для которого 1) un= f(n); 2) y = f(x) определена для " x ³ 1, непрерывна и возрастает, тогда ряд сходится, если сходится несобственный интеграл 1+¥f(x)dx, причем если он сходится , то n=1S¥ un = 1+¥f(x)dx

3 Знакопеременные ряды, ряды с комплексными числами.

Знакочередующиеся ряды – ряды, члены которых имеют чередующие знаки. Теорема Лейбница Если члены знакочередующегося ряда убывают по абсолютной величине и стремяться к нулю, когда n®µ,то 1) ряд сходится; 2) любой остаток ряда не превосходит по абсолютной величине первого из своих членов и имеет одинаковый с ним знак. Доказательство. Пусть дан ряд а1234+.+(-1) n-1аn+. и известно, что аn>an+1 для всех n и an®0 при n®µ.Рассмотрим частичную сумму ряда с чётным числом членов S2n= а1234 +.+a2n-1-a2n= (а12)+(а34)+.+(a2n-1-a2n). В силу первого условия все разности в скобках положительны, поэтому последовательность частичных сумм {S 2n} является возрастающей. Докажем, что она является ограниченной. Для этого представим S2n в виде S2n= а1-[(а23)+(а4 5)+.+(а2т-1-a2n-1)+a2n]. Вы ражение в квадратных скобках положительно, поэтому S2n<a1 для любого n, т.е. последовательность {Sn} ограничена. Итак, последовательность {Sn} возрастающая и ограниченная, следовательно, она имеет предел lim S2n=S. Так как S2n+1 =S2n+a2n+1, и по n®µ условию lim a2n+1=0, то lim S2n+1=limS2n=S. n®µ n®µ n®µ Мы доказали, что ряд сходится и его сумма удовлетворяет неравентвам 0<S<a 1. Докажем теперь второе утверждение. Рассмотрим остаток ряда а1234+.+(-1)n-1аn+. с чётным номером 2k: R2k=a2k+1- a2k+2+. Этот ряд является знакочередующимся и он удовлетворяет всем условиям теоремы, поэтому выполняются оценки 0<R2k<a2k+1. Что касается остатков ряда с нечётными номерами, то любой из них можно записать в виде R2k+1= -a2k+2+a2k+3-.=-(a2k+2-a 2k+3+.). Ряд в скобках снова удовлетворяет условиям теоремы, поэтому 0<-R2k+1<a2k+2 или -a2k+2< R 2k+1<0. Сходимость ряда вместе с неравенствами 0<S<a1, 0<R2k<a2k+1 и -a2k+2< R2k+1 <0 полностью доказывает теорему.

4. Абсолютно сходящиеся ряды и их свойства.

Пусть дан знакопеременный ряд. Рассмотрим ряд, составленный из абсолютных величин его членов |a1|+|a2|+.+|an|+. Очевидно, что это ряд с положительными членами. Ряд называется абсолютно сходящимся , если сходится ряд составленный из его членов. Теорема. Всякий абсолютно сходящийся ряд сходится. Сумма такого ряда равна разности между суммой его плюс-ряда и суммой минус-ряда. Доказательство. Пусть ряд а12+.+аn+. сходится абсолютно, т.е. сходится ряд |a1|+|a2|+.+|an|+. Обозначим частичные суммы ряда из модулей его членов через Tn. Имеем Tn = Tn++ Tn- (где Tn+ - некоторая частичная сумма плюс-ряда, Tn- - частичная сумма минус-ряда.) Ввиду сходимоти ряда |a1|+|a2|+.+|a n|+.его частичные суммы Tnограничены некоторым числом С. Тогда следует, Tn1+£С и Tn2- £С, т.е. частичные суммы минус- и плюс-ряда также ограничены сверху числом С. Согласно критерию сходимости рядов с положительными членами отсюда вытекает сходимость плюс- и минус-рядов, т.е. существуют пределы T+=lim T +k и T-=lim T-l. Если теперь k®µ l®µ из равенства перейти к пределу при n®µ, то получим limTn=T+-T-, ч.т.д. l®µ

5. Условно сходящиеся ряды.

Ряд а12+.+аn+. называется условно сходящимся , если он сходится, а ряд, составленный из модулей его членов, расходится. (теорема Римана.Если ряд сходится условно, то в результате перестаноски его членов можно получить ряд, имеющий любую сумму, а также расходящийся ряд.)

6. Ряды с комплексными членами. (cо слов Гончаренко)

Комплексное число представляется в виде a+b*i, где а – действительная часть числа, i – мнимая единица (поясняю: мнимая единица – единица, квадрат которой равен «-1»). Если суммы действительных(Sаn) и мнимых (Sbni) частей комплексных чисел сходятся, то сходится и весь ряд комплексных чисел. (аналогичны и остальные определения.) 7. Свойства правильно сходящихся рядов: непрерывность суммы ряда, почленное дифференцирование и интегрирование. (!!предполагается равномерно сход=правильно сход). Функция S(x) ,хÎW является суммой ряда, если S(x) =lim n→∞ S(x) , где S(x)=f1(x)+f2 (x)+.+fn(x) Если S(x) , хÎL (LÍΩ) является суммой ряда f 1(x)+f2(x)+.+fn(x)+.=n=1 fn(x) (функциональный ряд), то говорят, что рядсходится на множестве L функции S(x). Функциональный ряд называется равномерно сходящимся на множестве L к функции S(x) , если для любого числа e>0 существует номер N такой, что при n³N cразу для всех хÎL выполняется неравенство ½S(x) -Sn (x)½<e Если функциональный ряд сходится на множестве L , то на этом множестве сходимость не обязана быть равномерной, однако на некотором подмножестве множества L сходимость может оказаться уже равномерной. Признак равномерной сходимости Вейерштрасса. Если члены функционального ряда f1(x)+f2 (x)+.+fn(x)+. удовлетворяют на множестве L неравенством ½ fn (x)½≤Сn (n=1,2.) , где Сn – члены сходящегося числовогоряда С1+С2+.+ Сn+. то функциональный ряд сходится на множестве L равномерно. Свойства: Если функции fn(x) непрерывны на [a,b], составленный из них ряд f 1(x)+f2(x)+.+fn(x)+., то 1.Функция f(x) на [a,b] непрерывна 2. abf(x)dx=. ab f1(x)dx+.+. ab fn(x) dx+. Если fn(x) имеют непрерывную производную на [a,b] и на этом отрезке а)ряд f1(x)+f2(x)+.+fn(x)+. сходится к f(x) б)ряд f1'(x)+f2'(x)+.+fn' (x)+. сходится равномерно, то f(x) имеет на этом отрезке непрерывную производную f ' (x)= f1'(x)+f2 '(x)+.+fn'(x)+.

8. Степенные ряды.

Опр. Выражение вида а0+а1х+а2х2+.+акхк+. , (*) где а0, а1,а2,. - некоторая числовая последовательность наз степенным рядом. а0,а1,а2,.- коэффициенты степенного ряда. Если х придавать числовые значения, то будем получать числ. Ряды, которые могут сходиться и расходиться. Множество Х, при которых ряд (*) сходится, называется областью сходимости.

9. Теорема Абеля.

1)Если ряд (*) сходится в некоторой точке х0≠0, то этот ряд будет сходится и при всех х, удовлетворяющих условию: |х|<|х0|. 2)Если ряд (*) расходится в т. х1≠0, то этот ряд расходится при всех x: |х|>|х1|. Док-во.1). По усл степенной ряд а0+а1х0+а2х02 +.+акх0к+.(**) сходится, поэтому ак х0к →0, при к→∞. Значит, сходящаяся последовательность {акх0к} ограничена, т.е. сущ-т константа М такая, что |акх0к|<M для всех к=0,1,2. Рассмотрим |а0|+|а1х0|+|а2х02|+.+|акх0к|+..(***) Пусть |х|<|х0|, тогда |акхк|=|акх0к ||х/х0|<М|х/х0|к, причем |х/х0|<1. Поэтому члены ряда (***) не превосходят соответствующих членов сходящегося ряда М+М|х/х0|+М|х/х0|2+.+М|х/х0|к+.- суммы бесконечно убывающей геометрической прогрессии. Поэтому ряд (***) сходится, а ряд (**) сходится абсолютно. 2)Предположим, что ряд(**) расходится при х=х1, но для некоторого х:| х |>х1 По первой части теоремы ряд (**) сходится абсолютно при х=х1, следовательно получили противоречие. 10. Область сходимости степенного ряда. Радиус сходимости. Для степенного ряда (*) возможны только следующие случаи: 1)ряд сходится только в т.х=0 2)ряд сходится при всех х 3)существует такое R>0, что ряд сходится в интервале (-R;R) и расходится вне отрезка [-R;R]. R- радиус сходимости степенного ряда Теорема. Если существует предел D=lim|an+1/an| при n→∞, отличный от 0, то R степенного ряда а0+а1х+а2х2 +.+аnхn+.равен: R=1/D= lim|an/an-1| при n→∞. Опр. Пусть ф-я f(x)=Σn=1a nx, то говорят, что ф-я разлагается в степенной ряд с обл. сходимости(-R;R)

11. Теоремы о св-вах степенных рядов.

1. Пусть ф-я f(x) разлагается на интервале (-R;R) в степенной ряд а0+а1х+а2х 2+.+аnхn+.(1) . Рассмотрим степенной ряд а1+а2х+.+аnхn-1+.(2), полученный почленным дифференцированием ряда (1). Тогда: ряд (2) имеет тот же радиус сходимости R, Что и (1). На вем интервале (-R;R) ф-я f(x) имеет производную f(x)’, которая разлагается в степенной ряд (2). 2. Если ф-я f(x) разлагается на интервале (-R;R) в степенной ряд, то она интегрируема в этом интервале. Интеграл от суммы ряда равен сумме интегралов от членов ряда.

12 Разложение ф-й в степенные ряды. Ряд Маклорена.

Предположим, что ф-я f(x) разлагается на отрезке [-r;r] в степенной ряд f(x)=а0+а1х+а2х2+.+аnхn +.(1) Найдем а0,а1,а2,. f’(x)=а1+2а2х+3a3х2.+. f’’(x)=2а2+6а3х+4*3a4х2.+. . f(n)(x)=n(n-1)(n-2)*.*1*an+. Полагая, что х=0, получим: f(0)=a0, f’(0)=a1 f’’(0)=2a2,., f( n)(0)=n!a n Имеем: a n= f(n)(0)/n! Опр. Пусть ф-я f(x) определена в некоторой окрестности точки х=0 и имеет в этой точке произволдные всех порядков. Степенной ряд f(0)+ (f’(0)/1!)x+ (f’’(0)/2!)x 2+.+(f(n)(0)/n!)xn наз рядом Маклорена для ф-и f(x). Примеры разложений ф-й: ех=1+х+х2/2!+х3/3!+.+хn/n!+. для всех х. Sinx=x- х3/3!+х5/5!+.+(-1)nх2n+1/(2n+1)!+. Cosx=1- х2/2!+х4/4!+.+(-1)nх2n/(2n)!+. Ln(1+x)= x- х2/2+х3/3-.+(-1)nхn+1/(n+1)+. Arctgx= x- х3/3+х5/5+.+(-1)nх2n+1/(2n+1)+. (1+x)a=1+(a/1)x+(a(a-1)/1*2)x2+.+(a(a-1)*.*(a-n+1)/n!)xn+. Ln(1+x)/(1-х)= 2(x+х3/3+х5/5+.) 1/1-х=1+х+х23+. 1/1+х=1-х+х23+. Для натуральных а=м получим бином Ньютона: (1+x)м=1+(м/1)*x+(м(м-1)/1*2)x2+.

13. Ряд Тейлора.

Пусть ф-я f(x) определена в некоторой окрестности точки х=0 и имеет в этой точке произволдные всех порядков. Степенной ряд f(х0)+ (f’(х0)/1!)*(x-х0)+ (f’’(х0)/2!)*(x-х0)2+.+(f(n) (х0)/n!)*(x-х0)n+. называется рядом Тейлора с центром х0 джлдя ф-и f(x). Теорема. Если ф-я разлагается в некоторой окрестности т. х0 по степеням х-х0, то он явл рядом Тейлора с центром х0.

14. Приложения степенных рядов.

1. Вычисление значений показательной ф-и: пусть х=Е(х)+q, где Е(х)-целая часть числа х, q- дробная его часть, тогда ех= е Е(х)* еq, где находят с помомощью умножения, а – с помощью разложения ех=1+х+х2/2!+х3/3!+.+хn /n!+.. При 0≤х<1, этот ряд быстро сходится, поскольку остаток ряда Rn(x) оценивается след образом: 0≤ Rn(x) < хn+1/n!n 2. Вычисление значений логарифмической ф-и: Ln(1+x)= x- х2 /2+х3/3-.+(-1)nхn+1/(n+1)+. Заменим х на –х: Ln(1-x)= -x- х2/2-х3/3-.+-хn +1/(n+1)-. вычитая из первого равенства второе получим: Ln(1+x)/(1-х)= 2(x+х3/3+х5/5+.), где |х|<1. 3. Вычисление значений синуса и косинуса: Sinx=x- х3/3!+х5/5!+.+(-1)nх2n+1/(2n+1)!+. Cosx=1- х2/2!+х4/4!+.+(-1)nх2n/(2n)!+. Ряды при больших х сходятся медленно. Но, учитывая периодичность ф-й синуса и косинуса и формулы приведения тригонометрич. Ф-й, достаточно уметь вычислять sinx, cosx для промежутка 0≤х ≤ π/4. 4. Разложение ф-й в степенные ряды исп-ся для приближенного нахождения интегралов, а также при решении дифференциальных уравнений.

15 Матричные степенные ряды и условия их сходимости.

Пусть дана квадратная матрица А размера k и степенной ряд a0 + a1x + a2x2 +.+ anx n +. Степенным матричным рядом называется ряд, полученный заменой в степенном ряде переменной х на А: a0 + a1А + a2А2 +.+ anАn +. = n=0S¥ anАn. l - собственное значение матрицы А, если найдется ненулевой собственный вектор х, для которого выполняется равенство Ах = lх Матричный степенной ряд сходится тогда и только тогда, когда сходится степенной ряд a0 + a1l + a2l2 +.+ a nln +. = n=0S¥ an ln (*) для каждого собственного значения l матрицы А. Доказательство: Пусть матричный ряд сходится и l - собственное значение матрицы А с собственным вектором х. Пусть В = n=0S¥ anln, Вх – вектор. Т. к. для любого натурального n выполняется равенство Аnx = lnx, то справедливо равенство Вх = n=0S¥ anlnх Þ сходимость ряда (*). Для доказательства достаточности можно рассмотреть случай, когда собственные векторы матрицы А образуют базис пространства Rk. Для проверки сходимости ряда a0 + a1А + a2А2 +.+ anАn +. = n=0S¥ a nАn достаточно проверить, что для любого вектора х пространства Rk сходится ряд из векторов a0х + a1Ах + a 2А2х +.+ anАnх +. Если х – собственный вектор матрицы А, то ряд a0х + a1Ах + a2А2х +.+ an Аnх +. (**) сходится по условию. В общем случае вектор х представляется в виде линейной комбинации собственных векторов. Поэтому ряд (**) также представляется в виде линейной комбинации рядов такого же типа для собственных векторов, каждый из которых сходится. Следовательно, сходится и ряд (**) Þ теорема доказана.

6. Дифференциальные уравнения.

6.1 Задачи, приводящие к дифференциальным уравнениям. Модели экономической динамики с непрерывным временем. 1 Модель естественного роста (рост при постоянном темпе). Пусть у(t) – интенсивность выпуска продукции некоторого предприятия, отрасли. Мы будем предполагать, что имеет место аксиома о ненасышенности потребителя, т.е. что весь выпущенный предприятием товар будет продан, а также то, что объём продаж не является столь высоким чтобы существенно повлиять на цену товара р , которую ввиду этого мы будем считать фиксированной. Чтобы увеличить интенсивность выпуска у(t), необходимо чтобы чистые инвестиции I(t) (т.е. разность между общим объёмом инвестиций и амортизационными затратами) были больше нуля. Вслучае I(t)= 0 общие инвестиции только лишь показывают затраты на амортизацию, и уровень выпуска продукции остаётся неизменным. Случай I<0 приводит к уменьшению основных фондов и уровня выпуска продукции. Таким образом мы видми, что скорость увеличения интенсивности выпуска продукции является возрастающей функцией от I. Пусть эта зависимоть выражается прямой пропорциональностью, т.е. имеет место так называемый принцип акселерации. y¢=mI (m=const), где 1/m – норма акселерации. Пусть a - норма чистых инвестиций, т.е. часть дохода ру, которая тратится на чистые инвестиции, тогда I=a py. Отсюда подставляя выражение для I , получаем y¢=a m ру или y¢=ку, где к=ma р=const. Разделяя переменные в уравнении имеем Dy/y=kdt. После интегрирования обеих частей находим ln|y|=kt+lnC, или y=Cekt. Если y(t0)=y0,то C=y0e-kto, т.е. y=y 0ek(t-to) – это уравнение называется уравнением естественного роста. Этим уравнением описывается также динамика роста цен при постоянном темпе инфляции, процессы радиоактивного распада и размножения бактерий. 2. Логический рост. Пусть р=р(у) – убывающая функция (dp/dy <0), т.е. с увеличением выпуска будет происходить насыщение рынка и цена будет падать. Проведя аналогичные рассуждения получим уравнение: y¢=kp(y)y,( здесь k=la.) уравнение представляет собой автономное дифференциальное уравнение. Так как k>0, p>0, y>0, то у(t) – возрастающая функция (y¢>0). Исследуем у(t) на выпуклость. Дифференцируя уравнение по t, получим y¢¢=ky¢(dp y +p) или y¢¢=ky¢p(dp *y +1), т.е. y¢¢=ky¢p(1-1 ) , dy dy p |ey| где ey(p)= dy * p - эластичность спроса. dp y Из этого вытекает, что если спрос эластичен, т.е. |ey|>1, то y¢¢>0, т.е. функция спроса – выпуклая функция. Если спрос неэластичен, т.е. |ey|<1, то y¢¢<0 и функция спроса – вогнутая функция. Пусть, например, р(у)=b-ay (a, b>0), тогда уравнение принимает вид: y¢=k(b-ay)y. Из чего легко получить, что y¢=0, если у=0 или у= b/a, а также, что у¢¢<0 при у= b/2a, и у¢¢>0 при у> b/2a. В данном случае легко получить и явное выражение для y(t). Разделяя переменные в уравнении, находим dy = kdt, или dy(1+ a )= kdt. y(b-ay) b у b-ay Проинтегрировав это соотношение, имеем Ln|y|-ln|b-ay|= kbt+lnC, т.е. y/(b-ay)=Cekbt. Отсюда получим y= Cekbt . 1+Caekbt График этой функции называется логистической кривой. Она также описывает некоторые модели распространения информации, динамику эпидемий, процессы размножения бактерий в ограниченной среде обитания и т.п. Из графика логистической кривой видно, что при малых t логистический рост схож с естественным ростом, однако при больших t характер роста меряется, темпы роста замедляются и кривая асимптоматически приближается к прямой у=b/a. Эта прямая является трационарным решением уравнения y¢=k(b-ay)y и соответственно случаю р(у)=0. Для этого уравнения также существуют решения при у> b/a, имеющие графики. Но так как в этом случае р(у)<0, то эти графики не имеют экономической интерпретации. Более реалистичной является модель, в которой скорость роста зависит не от дохода, а от прибыли. Пусть С(у)= aу+b - издержки (b,a - константы) тогда у¢=k(p(y)y-aу-b). Если p(y)=b-aу,то правая часть уравнения представляет собой квадратный многочлен относительно у с отрицательным коэффициентом перед у 2. В этом случае возможны три варианта. 1) D<0. Следовательно, у¢<0. Издержки настолько велики, что это приводит к постоянному падению производства и в конце концов к банкротству. 2) D=0.В этом случае у¢<0 и меется одна стационарная кривая у=у*<b/a. При этом интегральные кривые, удовлетворяющие начальному условию у(t0)=y0>y* , будут ассимптотически приближаться к у* на +µ, а интегральные кривые, удовлетворяющие условию у(t0)< у* будут ассимптотически приближаться к у* на -µ. 3) D>0. В этом случае существует два стационарных решения у=у1 , у=у2. (0<y1<y2). При этом у¢>0 при y1<у<y2 и у¢<0 при у<y1 или у>у2. 3. Неоклассическая модель роста. Пусть Y=F(K,L) – национальный доход, где К – обьём капиталовложений (фондов), L – величина затрат труда, F(K,L) – линейно-однородная производственная функция (F(tK,tL)=tF(K,L)). Пусть f(k) – производительность труда: F(k)= F(K,L)/L=F(K/L,1)=F(k,1), где k=K/L – фондовооружённость. Как известно, f¢(k)>0, f¢¢(k)<0. Предполагаем, что: 1. происходит естественный прирост трудовых ресурсов, т.е. L¢=aL(a=const); 2. Инвестиции направлены как на увеличение производственных фондов, так и на амортизацию, т.е. L¢=K¢+bK (b - норма амортизации). Пусть l – норма инвестиций (т.е. I=lY), тогда lY=K¢+bK ÞK¢=lY-bK. Из определения фондовооружённости вытекает ln k=lnK-lnL. Дифференцируем эти соотношения по t, получим k¢/k=K¢/K-L¢L. Подставляя значения для L¢ и K¢ , находим k¢= lY-bK - a, т.е. k¢=lYk – (b+a)k = lYK -(b+a)k k K K kL Учитывая, что f=Y/L, получим K¢=lf(k)- (b+a)k. – уравнение неоклассического роста. 2. Дифференциальные уравнения высших порядков. Задача Коши. Обыкновенным дифференциальным уравнением называется выражение, связывающее независимую переменную х, функцию у и ее производные. Порядком дифференциального уравнения называется наивысший порядок производной, входящей в это уравнение. Дифференциальное уравнение n-го порядка вида у(n) =f(x, у, у',.у(n-1)) (*) называется разрешенным относительно высшей производной. Решением дифференциального уравнения n-го порядка называется всякая функция у=φ(x), определенная для значений х на конечном или бесконечном интервале , имеющая производные до n-го порядка включительно, и такая, что подстановка этой функции и ее производных в дифференциальное уравнение обращает последнее в тождество по х. Нахождение решений дифференциального уравнения называется интегрированием этого дифференциального уравнения. во многих случаях требуется находить решение дифференциального уравнения, удовлетворяющего некоторым дополнительным условиям, например, задача Коши состоит в отыскании решения диф. уравнения (*), определенного в некоторой окрестности точки х0 и такого, что у(х0)= у0 , у'( х0)=у1,..., у (n-1)0)= уn-1, где у0, у1,., уn-1 – заданные числа. 3. Линейные дифференциальные уравнения: однородные и неоднородные. Фундаментальная система решений. Метод Лагранжа вариации постоянных. Линейное дифференциальное ур-е n-го порядка: y(n) + a1(x) y(n-1) +.+an(x) y = b(x) наз неоднородным, если b(x)≠0; однородным уравнение наз в том случае, если b(x)=0. Если у11(х), у22(х),. уkk(х) – решения однородного ур-я y( n) + a1(x) y(n-1) +.+an(x) y =0(*), то любая их линейная комбинация С1у 1 + С2у2+.+ Сkуk, где С1 , С2 – постоянные, также решение этого однородного ур-я. Система ф-й наз линейно независимой на интервале (a,b), если ни одна из этих ф-й не может быть выражена в виде линейных комбинации остальных ф-й. Фундаментальный набор решений –это набор линейно независимых решений ур-я (*), содержащий количество ф-й, равное порядку дифференциального ур-я. Теорема. Для того, чтобы решения у11(х), у 22(х),. уkk(х) линейного однородного диф-го ур-я с непрерывными на отрезке [a,b] коэффициентами были Л.Н.З. на интервале (a,b), необходимо и достаточно, чтобы определитель Вронского | φ1(х) φ2(х). φn(х) | W(x)=| . | | φ1(n-1)(х) φ2(n-1)(х). φn(n-1)(х)| был отличен от нуля при любом х из [a,b]. Любое решение однородного ур-я можно представить в виде линейной комбинации фундаментального набора решений : ў=∑i=1n Ciyi , где Ci (i=1,2,.) – произвольные постоянные. (общее решение однородного диф. Ур-я(*)). 4. Связь между общим и решением однородной и неоднородной систем. Пусть ў – общее решение однородного уравнения(*), ỳ- некоторое решение неоднородного уравнения y(n) + a1 (x) y(n-1) +.+an(x) y = b(x) (**). Тогда у= ў+ ỳ - общее решение неоднородного ур-я (**). Зная общее решение неоднородного ур-я, легко найти любое его частное решение.

5. Метод Лагранжа вариации постоянной.

Сначала решается однородное линейное дифференциальное уравнение (*), соответствующее неоднородному (**): находят общее решение (*). Затем постоянную величину С, входящую в полученное общее решение, полагают новой неизвестной функцией от х: С=С(х), т.е. варьируют произвольную постоянную. Найденную ф-ю подставляют в полученное на первом этапе общее решение однородного уравнения, получаем общее решение неоднородного уравнения. 6 Линейные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида. y” + py’ + qy = f(x) Алгоритм решения I) Необходимо найти общее решение однородного линейного уравнения y” + py’ + qy = 0, соответствующего заданному неоднородному уравнению. Для этого необходимо сначала решить характеристическое уравнение l2 + pl + q = 0. В зависимости от решения характеристического уравнения необходимо записать общее решение однородного линейного уравнения. Возможны следующие случаи: 1) D = p2 – 4q > 0, l1,2 – два действительных различных корня характеристического уравнения, тогда общее решение имеет вид: Y = C1el1x + C2el2x; C1, C2 = const. 2) D = p2 – 4q = 0, l =-p/2 – единственный корень характеристического уравнения , тогда общее решение имеет вид: Y = C1elx + C2elx; C1, C2 = const. 3) D = p2 – 4q < 0, l1,2 = a + ib – два комплексно-сопряженных корня характеристического уравнения, тогда общее решение имеет вид: Y = C1eax sinbx + C2eaxcosbx, C1, C2 = const. II) Необходимо найти частное решение неоднородного линейного уравнения по следующей таблице. Поиск частных решений линейных дифференциальных уравнений второго порядка с постоянными коэффициентами y” + py’ + qy = f(x)
F(x)Дополнитель-ные условияЧастное решение φ(x)

pn(x)- многочлен n- ой степени

q ≠ 0

φ(x) = Pn(x)

q = 0

φ(x) = x Pn(x)

p = q = 0

φ(x) = x2 Pn(x)

aebx; где a,b = const

b ≠ l1,2

Φ(x) = Aebx, где A = const

b = l1

Φ(x) = Axebx, где A = const

b = -p/2 = l

φ(x) = Ax2 ebx, где A = const

asin kx +

+ bcos kx

k ≠ 0, p ≠ 0φ(x) = Asin kx + Bcos kx

p = 0, q = k2

φ(x) = x (Asin kx + Bcos kx)

pn(x) + debx + asin kx+ bcos kx

Cумма частных решений для каждого слагаемого

(pn(x) sin kx + qm(x) cos kx) ebx

φ(x) = (Pn(x) sin kx + Qm(x) cos kx) ebx

III. Общее решение неоднородного линейного уравнения находится как сумма общего решения однородного линейного уравнения и частного решения неоднородного линейного уравнения y = φ(x) + Y 7 Нормальная система дифференциальных уравнений. Векторная запись нормальной системы. Общий вид дифференциального уравнения первого порядка есть F(x,y,y¢)=0. Если это уравнение можно разрешить относительно у¢, т.е. записать в виде у¢=f(x,y), то говорят, что уравнение записано в нормальной форме (или в форме Коши). Рассмотрим геометрическую трактовку нахождения решений уравнения. Возьмём некоторую точку (x0,y0) из области определения D функции f(x,y). Пусть у=j(х) – интегральная кривая, проходящая через эту точку. Из уравнения вытекает, что j¢(х0)=(х00). Таким образом, угловой коэффициент касательной к интегральной кривой, проходящей через точку (х00) равен (прих=х0) числу f(х0,у0). Построим теперь для каждой точки (х00) из области определения прямую, проходящую через эту точку и имеющую угловой коэффициент, равный f(х00). В этом случае принято говорить, что эта прямая определяет направление в точке (х00), а на множестве D задано поле направлений. Если каждое уравнение, входящее в систему, является дифференциальным, т.е. имеет вид соотношения, связывающего неизвестные функции и их производные, то говорят о системе дифференциальных уравнений. Так система дифференциальных уравнений первого порядка с двумя неизвестными функциями записывается обычно в виде ì í j(t,x1,x2, dx1/dt,dx2/dt)=0 î y( t,x1,x2, dx1/dt,dx2/dt)=0. На системы дифференциальных уравнений естественным образом обощается постановка задачи Коши для одного уравнения. Например, в случае данной системы задача Коши состоит в нахождении решения х1(t),x2(t), удовлетворяющих начальным условиям х1(t0)= х10, x 2(t0)= x20, где t0, х1 0, x20 – заданные числа. Для случая системы может быть доказана теорема существования и единственности решения задачи Коши, аналогичная теореме для одного уравнения. 8. Теорема существования и единственности решения задачи Коши. Если в некоторой окрестности точки (х00) функция f(х,у) определена, непрерывна и имеет непрерывную частную производную f¢y , то существует такая окрестность точки (х00), в которой задача Коши имеет решение, притом единственное. (приводится без доказательства) Задача о нахождении решений дифференциального уравнения у¢=f(x,y), удовлетворяющих начальному условию у(х0)=у0 , называется задачей Коши. К системам дифференциальных уравнений первого порядка в известном смысле сводятся уравнения (и системы уравнений) любого порядка. Пример. Пусть дано уравнение у¢¢¢=f(x,y,y¢,y¢¢). Если обозначить функцию y¢и y¢¢ соответственно через m и n, то уравнение можно заменить системой ìy¢=m ím¢=n în¢=f(x,y, m,n) состоящей из трёх уравнений первого порядка с тремя неизвестными функциями. Векторная запись нормальной системы. (со слов Гончаренко) Пусть дана нормальная система из n уравнений с n неизвестными. ìx1=f(x1,x2,.,xn), ïx2= f(x1,x2,.,xn), í... îxn= f(x1,x2,.,xn). . Представим набор решений как вектор х= (x1,x2,.,xn) в проистранстве Rn. . . . . Функцию также можно записать в векторном виде f=(f(x),f(x),.,f(x)). Векторная запись всей системы будет выглядеть следующия образом: . . . x = f ( x ).

7. Теория вероятностей.

1 Случайные события и предмет теории вероятностей.

а)Некоторое событие называется случайным по отношению к данному опыту, если при осуществлении этого опыта оно может наступить, а может и не наступить (напр, выпадение герба при бросании монеты). Согласно данному определению событие считается случайным, если его наступление в результате опыта (опыт – совокупность условий, которые можно воспроизводить бесконечное число раз) представляет собой лишь одну из возможностей. Под это определение формально подходят такие события, которые обязательно наступают в результате данного опыта – достоверные события. аналогичное замечание относится и к невозможным событиям ,т.е. таким, которые никогда не наступают при совершении данного опыта. Теория вероятностей занимается изучением закономерностей, присущих массовым случайным событиям. б)Сравнивая между собой случайные события, мы говорим, что одно из них более вероятно. Чтобы придать подобным сравнениям количественный смысл, необходимо с каждым событием связать число, выражающее степень возможности данного события: Пусть А – случ. событие в некотором опыте. Опыт произведен N раз и А наступило в NA случаях. Составим отношение: μ= NA/N .Оно называется частотой наступления А в серии опытов. Для многих случайных событий частота обладает свойством устойчивости, т.е. с увеличением числа опытов стабилизируется и приближается к некоторой постоянной р(А). Вероятность случайного события – это связанное с данным событием постоянное число, к которому приближается частота наступления этого события в длинных сериях опытов. (статистическое определение: опирается на понятия "опыт", "наступление события")

2. Комбинация событий.

1)Сумма событий А и В есть событие С, которое заключается в том, что либо А произошло, либо В, либо А и В произошли вместе. С=А+В 2)Произведение событий А и В есть событие Д, которое заключается в том, что А и В произошли вместе. Д=АВ 3)Противоположное событие. А – исходное событие, Ā – противоположное событие заключается в том, что А не произошло (напр, А – попадание при выстреле, Ā – промах). 4)Равенство между событиями. События А и В считаются равными, если всякий раз, когда наступает одно из них, наступает и другое.
Каждое событие можно истолковать как некоторое множество, а операции А+В, АВ, и Ā над событиями – как операции объединения, пересечения и дополнения для множеств. 5)А и В несовместны, если они не могут произойти вместе в одном опыте. АВ=Æ

3. Формула сложения вероятностей.

Если А и В несовместны р(А+В)=р(А)+р(В) р(А)+р(Ā)=1. Каждому событию А ставится в соответствие некоторое подмножество множества W. Все возможные исходы (элементы множества) – множество элементарных событий. W={ωi} Все возможные события – система подмножеств s. s={A1,A2...} 1.Любое подмножество можно представить в виде суммы ωi . 2.Если А1, А2,.Îs (алгебра событий), то А1ÈА2È.Îs, А1ÇА2Ç.Îs (если А1, А2,. - события, то их объединение тоже событие) 3.Если А – событие, то Ā есть тоже событие.(АÎs, то ĀÎs) Аксиомы вероятностей. 1.Каждому событию А поставлено в соответствие неотрицательное число р(А), называемое вероятностью события А. 2.Если события А1, А2,.попарно несовместны, то р(А1,А2,.)= р(А1)+р(А2)+. 4. Комбинаторное правило умножения. Размещения, перестановки и сочетания. Одни события явл. комбинациями других. И это необходимо учитывать при нахождении вероятностей. Комбинаторное произведение событий. Пусть А и В – два события. Произведение событий А*В есть событие Д, заключающееся в том, что А и В произошли вместе: А*В=Д. Аналогично определяется произведение любого множества событий. Размещения. Перестановки, сочетания. Всевозможные группировки из данных n элементов по м в каждой, отличающиеся друг от друга либо самими элементами. Либо порядком расположения эл-в, называют размещениями из к элементов по m. Например, размещения из 3-х эл-в а,б,с: аб,ас,ба,бс,са.сб. Число всех размещений из n эл-в вычисляют: Anm=n!/(n-m)! Перестановками из n эл-в наз их группировки, отличающиеся друг от друга только порядком входящих в них эл-в. Например, перестановки из а,в,с: авс,сва,вас,вса, асв,сав. Число всех различных перестановок: Рn= n! Всевозможные группировки из данных n эл-в по m в каждой, отличающиеся друг от друга хотя бы одним элементом, наз сочетаниями из n эл-в по m. Пример: сочетания из а,в,с,д по 2:ав, ас, ад, вс, вд, сд. Число всех сочетаний из n эл-в по m: Cnm = n!/(m!*(n-m)!).

5. Классический способ подсчета вероятностей.

Опыт (Е) ® множество элементарных исходов: А1, А2.: 1) все Аi равновозможные 2) любые два исхода несовместны 3) А1 È А2 È. = W Р {А} = m/n, где n – общее число элементарных исходов, связанных с Е, m – число элементарных исходов, приводящих к А

6. Геометрические вероятности

Геометрические вероятности – вероятность попадения точки в область (отрезок, часть плоскости и т. д.). Пусть отрезок l составляет часть отрезка L. На отрезок L на удачу ставится точка (поставленная точка может оказаться в любой точке отрезка L), вероятность попадения точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. Вероятность попадения точки на отрезок l определяется равенством P =Длина l / Длина L. Пусть плоскость фигуры g составляет часть плоскости фигуры G. На фигуру G наудачу брошена точка, т. е. брошенная точка может оказаться в любой точке фигуры G. Вероятность попадения брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. Вероятность попадения точки в фигуру g определяется равенством P = Площадь g / Площадь G.

7. Правило сложения вероятностей.

Если событие А и В несовместны, то Р{А + В} = Р{А} + Р{В} Доказательство: Е, Nраз , NА раз наблюдалось событие А, NВ раз наблюдалось событие В, NА+В раз наблюдалось событие А+В. Так как А и В несовместны, то NА+В = NА + NВ, NА+В / N = NА / N+ NВ / N. Если устремить N ® ¥, то получается Р{А + В} = Р{А} + Р{В} Обобщение: Если А1, А2, . , Аn – попарно несовместны, то Р{А1 + А2 + . + Аn } = Р{А1} + Р {А2}+ . + Р {Аn} 8. Условная вероятность. Правило умножения вероятностей Пусть A и В – два случайных события по отношению к некоторому опыту s, причём р(В) не равно нулю. Число р(АВ)/р(В) называется вероятностью события А при условии, что наступило событие В, или просто условной вероятностью события А. Таким образом рв(А) = р(АВ)/р(В). Пусть N – общее число экспериментов, NB - число экспериментов, в которых имело место событие В. NАВ – Число экспериментов, в которых имели место события А и В одновременно. Отношение NАВ/NB – частота события А при условии, что наступило событие В. р(АВ)=рВ(А)р(В) – Вероятность произведения двух событий равна вероятности одного из этих событий при условии другого, умноженной на вероятность самого условия. Аналогичная формула справедлива для трёх событий. р(А1А2А3)=р(А1А1 2А1А23) А не зависит от В, если выполняется равенство рВ(А)=р(А). Наступление В не оказывает влияния на наступление события А. Правило умножения вероятностей - Если событие А не зависит от В, то справедливо равенство р(АВ)=р(А)р(В). (веростность произведения равна произведению вероятностей)

9. Формула полной вероятности. Формула Байеса

Если события Н1, Н2,.,Нn попарно несовместны и образуют полную группу, то для вероятности любого события А справедлива формула р(А)=рН11)р(Н1)+рН2(А)р(Н2 )+.+рHn(А)р(Нn). Вероятность события А равна сумме произведений условных вероятностей этого события по каждой из гипотез на вероятность самих гипотез. Формула Байеса. (условие – событие А может наступить только с одной из гипотез). Эта формула определяет вероятность, что имела место именно эта гипотеза. Вывод формулы. p(AHi)=pHi(A)p(Hi) p(HiA)=pA(Hi)p(A) приравниваем правые части, получим pHi(A)p(Hi)=pA(Hi)p(A) воспользуемся формулой полной вероятности. pA(Hi)= рHi(A)p(Hi) . рН11)р(Н1)+рН2(А)р(Н2)+.+рHn(А)р(Нn)

10. Дискретная СВ и ее закон распределения.

Величина, принимающая в результате испытания (опыта) определенное значение, называется случайной величиной. СВ Х называется дискретной, если существует конечное и счетное множество S={х1, х2,.} такое, что Р(ХÎS)=1. Числа х1, х2,.называются возможными значениями СВ Х. Пусть рi=Р(Х=хi ) – вероятность возможного i-го значения. При хi ≠ хj события Х=хi и Х= хj несовместны. Применяя правило сложения вероятностей для несовместных событий получим: Таблица
Хх1х2.
Рр1р2.
называется законом распределения дискретной СВ Х. Для любой СВ функция распределения – F(x)=P(X<x) . В случае дискретной СВ функция распределения имеет вид F(x) – ступенчатая функция со скачками в х1, х2,., причем величины скачков равны р1, р2,.

11. Числовые хар-ки СДВ.

Математическим ожиданием дискретной СВ Х, множество возможных значений которой конечно, называется сумма произведений всех ее возможных значений на их вероятности: М(Х)=х1р12 р2+.+хnpn Свойства. 1.Матем. ожидание константы равно константе: М(С)=С 2.Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х) 3.Математическое ожидание суммы СВ равно сумме мат. ожиданий слагаемых: М(Х1+Х2+.+Хn)=M(X1)+M(X2)+.+M(Xn) 4.Математическое ожидание произведений независимых СВ равно произведению математических ожиданий сомножителей. (дискр.СВ наз. независимыми, если Р(Х 11,.Хn=an)=P(X1=a1)*.Р(Xn=a n). Для любой СВ Х разность Х-М(Х) называется отклонением Х. Математическое ожидание квадрата отклонения СВ Х называется дисперсией Х. По определению D(X)=M(X-M(X))2. Стандартное отклонение СВ Х определяется как корень квадратный из дисперсии и обозначается s(х). Из свойств математического ожидания: D(X)=M(X2 )-M(X)2 Свойства. 1.Прибавление (вычитание) константы к СВ не меняет ее дисперсии D(X+C)=D(X) 2.Постоянный множитель выносится из-под знака дисперсии в квадрате D(СX)=С2D(X) 3.Дисперсия суммы независимых СВ равна сумме дисперсий слагаемых D(X1+.+Xn)=D(X1)+.+ D(Xn) Важно помнить, что дисперсия константы равна 0: D(C)=0 Начальным моментом порядка К СВ Х называют математическое ожидание величины Хк : nк=М(Хк) Центральным моментом порядка к случайной величины Х называют математическое ожидание величины (Х-М(Х)) к mк=М[(X-M(X)) к] Cоотношение, связывающее начальные и центральные моменты: m2=n2-n12 При изучении распределений, отличных от нормального, возникает необходимость количественно оценить это различие. С этой целью вводят специальные характеристики – асимметрию и эксцесс (для нормального распределения эти характеристики равны 0). Асимметрией теоретического распределения (теоретическим называют распределение вероятностей) называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения: Аs=m3\s3 Эксцессом теоретического распределения называют характеристику, которая определяется следующим равенством: Ек=(m4\s4)-3 12 Биномиальное, Пуассоновское, геометрическое и гиппергеометрическое Биномиальным распределением С параметрами n и р наз распределение числа успехов в n независимых испытаниях с вероятностью успеха в каждом испытании р. Биномиальное распред-е имеет вид:
Х012.n
Р

Cn0p0qn

Cn1p1qn-1

Cn2p2qn-2

.

Cnnpnq0

Где q = 1-р. Для случайной величины Х, распределенной по биномиальному закону с параметрами n и р, M(X)=np, D(X)=npq. Пуассоновское распределение с параметром λ>0 задается следующей бесконечной таблицей
Х01.k.
Р

e-λ

λ e-λ /1!

.

λke /k!

.
M(x)=D(X)=λ Геометрическим распределением с параметром р наз распределение числа испытаний до первого успеха в серии независимых испытаний с вероятностью успеха в каждом испытании. Оно имеет вид бесконечной таблицы:
Х12.k.
Рр.

qk-1p

.
Для дискретной случайной величины. Распределенной по геометрическому закону, M(X)=1/p, D(X)=q/p2. Гипергеометрическое распределение . Рассмотрим пример. Пусть в партии из N изделий имеется М стандартных. Из нее случайно отбирают n изделий, причем отобранное изделие не возвращается в партию. Пусть Х- С.В.- число m изделий среди n отобранных. Найдем Р(Х=m): (1) - Общее число элементарных исходов = СnN. (2) - Число исходов, благоприятствующих событию Х=m,(среди взятых n изд-й ровно m стандартных)= СmM Сn-mN-M (m стандартных изделий можно извлечь из М СmM способами, при этом остальные n-m изделий д.б. нестандартными, последние мы извлкаем из N-M нестандартных изделий Сn-mN-M способами). Искомая вероятность равна отношению (1) к (2): Р(Х=m)= СmM Сn-mN-M / СnN Причем, если n Значительно меньше N, то гипергеометрич. Распределение дает вероятности, близкие к вероятностям, полученным по биномиальному закону.

13 Функция распределения случайной величины.

Определение. Функцией распределения случайной величины x называется функция F(x) = P{x < x} Свойства F(x): 1) Зная F(x), можно найти P{x1 £ x < x2} {x < x2} = {x < x2} È {x1 £ x < x2} Þ P{x < x2} = P{x < x2} È P{x1 £ x < x2}Þ Þ P{x1 £ x < x2} = F(x2) - F(x1) 2) Функция F(x) неубывающая, причем 0 £ F(x) £ 1 Если x2 > x1, то F(x2) ³ F(x1) ( P{x < x2} ³ P{x < x1} ) 3) Справедливы равенства: а) lim F(x) = lim P{x Î (-¥; x)} = 1; b) lim F(x) = 0 x ® +¥ x ® +¥ x ® - ¥ 4) Функция F(x) = lim F(x - a) º F(x – 0) a ® 0, a > 0 5) P{x = x} = F(x+0) – F(x-0); где F(x+0) º lim F (x + a) a ® 0, a > 0

14. Непрерывные случайные величины

Случайная величина x называется непрерывной, если непрерывной является ее F(x) (в любой точке x) Случайная величина x называется абсолютно непрерывной, если ее F(x) дифференцируема в любой точке x1 за исключением, быть может, конечного числа точек. Свойства непрерывной случайной величины: P{x = x} = F(x+0) – F(x-0) = 0 При этом F(x) непрерывна.

15. Свойства функции плотности.

Плотность вероятности абсолютно непрерывной случайной величины есть по определению функция f(x) = F’(x) Свойства f(x): 1) f(x) ³ 0 2) abf(x)dx = F (b) – F(a) Þ abf(x)dx =P{a £ x < b} 3) -¥¥f(x)dx = P{-¥ £ x < ¥} = 1; -¥¥f(x)dx = 1 - условие нормировки 4) (вероятностный смысл f(x)) XoXo+ΔX f(x)dx = P{x0 £ x < x0 + Δx} При Δx ® 0; XoXo+ΔX f(x)dx » f(x0 )Δx » P{x0 £ x < x0 + Δx} 16. Математическое ожидание и дисперсия непрерывной случайной величины x - непрерывная случайная величина, x Î (-¥; +¥) x x x x x X-2 X-1 Xo X1 Введем дискретную случайную величину xЕ Î {., x-2, x-1, x0, x1, x2,.} Закон распределения дискретной случайной величины xЕ Pi = P{xi £ x < xi+1} = XiXi+1f(x)dx x x1 x2 . p p1 p2 . Математическое ожидание МxЕ = i = -¥S¥xipi = i = -¥S¥xip{xi £ x < xi+1} По определению полагаем: Mx = lim МxЕ = lim i = -¥S¥xi f(xi )Δxi = -¥¥xf(x)dx E®0 E®0 E Итак, если x Î (a,b), то Мx = abxf(x)dx; abf(x)dx = 1 Дисперсия Dx = M{(x - Mx)2} = ab (x - Mx)2 f(x)dx Стандартное отклонение случайной величины X определяется как корень квадратный из диспрерсии и обозначается σx. Для математического ожидания и дисперсии непрерывной случайной величины Х сохраняются свойства числовых характеристик дискретной случайной величины. 17. Непрерывные распределения специального вида (равномерное, показательное, распределение Лапласа) Функцией распределения вероятностей случайной величины называется функция F(x), значения которой для каждого значения аргумента х даёт вероятность того, что случайная величина Х принимает значение, меньшее х, т.е. F(x)=P(X<x). Если функция распределения F(x) всюду дифференцируема, за исключением, быть может, нескольких точек, то случайная величина Х называется абсолютно непрерывной. Тогда функцией плотности f(x) называется её производная. Распределение вероятностей называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение. для хÎ[a,b] f(x)=const для хÏ[a,b] f(x)=0. const=1/(b-a). M(x)=(b+a)/2; D(x)=(b-a)2/12.s(x)=(b-a)/2Ö3 Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью f(x)= ì 0 , x<0, íî le-lx ,x³0. График выглядит следующим образом М(х)=1/l. D(x)=1/l2.s(x)=1/l. Нормальным называют распределение вероятностей непрерывной случайной величины, которая описывается плотностью.( гауссовское распределения) f(x)= 1* e-(x-a)^2/2s^2 sÖ2pØ нормальное распределение определяется параметрами а и s. Функция Лапласса. Ф(х)= 1òх е-t^2/2 Ö2p 0 вершина достигается в точке (а; 1/(Ö2pØs)) D(x)=s2; M(x)=a; s(x)= s. Среднее квадратичное отклонение нормального распределения равно параметру s. 18. Неравенства Маркова и Чебышева. Закон больших чисел. Теоремы Бернулли и Чебышева. Центральная предельная теорема Ляпунова. Неравенство Маркова . Пусть У ³0 - дискретная СВ. e>0 - некоторое число, тогда Р(У³e) ≤М(У)\ e Неравенство Чебышева. Пусть имеется СВ x с математическим ожиданием m и дисперсией D. Каково бы ни было положительное число e, вероятность того, что величина x отклонится от своего математического ожидания не меньше чем на e, ограничена сверху числом D\e2 Под законом больших чисел в теории вероятностей понимается ряд теорем, в каждой из которых устанавливается факт приближения средних характеристик большого числа опытов к некоторым определенным постоянным. Теорема Чебышева. Пусть имеется бесконечная последовательность x1,x2,.. независимых случайных величин с одним и тем же математическим ожиданием m и дисперсиями, ограниченными одной и той же постоянной: M[x1]=M[x2]=.=m D[x1]<c, D[x2]<c,. Тогда каково бы ни было положительное число e, вероятность события |((x1+.+xn)\n)-m|<e, стремится к 1 при n стремящемся к бесконечности. Теорема Бернулли. Пусть производится n независимых опытов, в каждом из которых с вероятностью р может наступить некоторое событие А. Рассмотрим СВ n - число наступлений события А в n опытах. Каково бы ни было положительное число e, вероятность события |n\n-p|<e стремится к 1 при n стремящемся к бесконечности. Центральная предельная теорема Ляпунова. Если последовательность x1,x2,..независимых СВ удовлетворяет условию Ляпунова (отдельные отклонения xi от ее математического ожидания должны быть равномерно малы по сравнению с суммарным отклонением случайных величин. Если при n стремящемся к бесконечности предел то будем говорить, что последовательность x1,x2,..удовлетворяет условию Ляпунова) то справедливо предельное соотношение что означает, что закон распределения СВ v' с ростом приближается к нормальному с мат. ожиданием 1 и дисперсией 0.

8. Математическая статистика.

1. Генеральная совокупность и выборка. Вариационный ряд. Гистограмма, Опр.1. Выборкой наз совокупность случайно отобранных объектов. Опр.2 Генеральной совокупностью наз совокупность объектов, из которых производится выборка. Объемом сов-ти наз число объектов этой совокупности. Опр.3. Ряд распределения – это упорядоченное распределение единиц совокупности на группы по к.-л. признаку. Вариационным рядом (в.р.) наз группировка сов-ти по количественному признаку, т.е. это ряд распределения, сгруппированный по колич. Признаку. В.Р. будет дискретным, если он остроен подискретному признаку и непрерыным, если – по непрерывному. В случае непрерывного признака целесообразно строить гистограмму. На оси Ох строятся интервалы, над которыми строятся прямоугольники с высотой, равной частоте (относительной частоте) соответствующего интервала.
Площадь гистограммы равна сумме всех частот, т.е. объему выборки.( в случае относительных частот = 1).

2. Эмпирическая ф-я распределения.(э.ф.р.)

Опр. Э.Ф.Р. (ф-й распределения выборки) наз ф-ю F*(х), определяющую для каждого значения х относительную частоту события Х<х: F*(х)=nx/n, nx число вариант, меньших х, n- объем выборки.

3. Выборочная средняя

Опр. Выборочной средней Хв(над Х необходимо рисовать черточку) наз среднее арифметическое значение признака выборочной совокупности. Если все значения х 12,.,хn различны, то Хв=(х1+х2+.+ хn)/n. Если значения признака х12,.,хk имеют соответственно частоты n1,n2,.,nk, причем n 1+n2+.+nk =n, то Хв=(∑i=1knixi)/n, т.е. выборочная средняя есть средняя взвешанная значений признака с весами, равными соответствующим частотам.

4. Выборочная дисперсия.

Выборочной дисперсией Dв наз среднее арифметическое квадратов отклонений наблюдаемых значений признака от их среднего значения Хв (с чертой). Если все значения х12,.,хn различны, то Dв=(∑i=1n(xi – xв )2)/n Если значения признака х12,.,хk имеют соответственно частоты n1,n2,.,nk, причем n 1+n2+.+nk =n, то Dв=(∑i=1 kni(xi – xв )2)/n, т.е. выборочная дисперсия есть средняя взвешанная квадратов отклонений с весами, равными соответствующим частотам. 5. Статистические оценки: несмещенные, эффективные, состоятельные Рассматривая x1, x2, . , xn как независимые случайные величины X1, X2, . , Xn, можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения – это значит найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра. Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Пусть Θ* - статистическая оценка неизвестного параметра Θ теоретического распределения. Несмещенной называют статистическую оценку Θ*, математическое ожидание которой равно оцениваемому параметру Θ при любом объеме выборки, т. е. М(Θ*) = Θ. Возможные значения Θ* могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия D (Θ*) может быть значительной Þ существует возможность допустить большую ошибку. По этой причине к статистической оценке предъявляется требование эффективности. Эффективной называют статистическую оценку, которая (при заданном объеме выборки n) имеет наименьшую возможную дисперсию. Состоятельной называют статистическую оценку, которая при n ® ¥ стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при n ® ¥ стремится к нулю, то такая оценка оказывается и состоятельной.

6. Точность и надежность оценки

Пусть найденная по данным выборки статистическая характеристика Θ* служит оценкой неизвестного параметра Θ. Если Δ > 0 и | Θ – Θ*| < Δ, то чем меньше Δ, тем оценка точнее. Таким образом, положительное число Δ характеризует точность оценки. Надежностью (доверительной вероятностью) оценки Θ по Θ* называют вероятность g, с которой осуществляется неравенство | Θ – Θ*| < Δ. Обычно надежность оценки задается наперед, причем в качестве g берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999. Доверительным называют интервал (Θ* - Δ, Θ* + Δ), который покрывает неизвестный параметр с заданной надежностью g. Для определения необходимой численности выборки нужно задать уровень точности выборочной совокупности (Δ) с определенной вероятностью (g). Ф ((Δ√n ) / σ) = g / 2 Þ можно найти значение t = (Δ√n ) / σ Þ n = (t2σ2)/Δ 2 7. Понятие о критериях согласия. Проверка гипотез о равенстве долей и средних. Проверка гипотезы о виде распределения. Статичтической называют гипотезу о виде неизвестного распределения, или о параметрах известных распределений. Нулевой (основной) называют выдвинутую гипотезу Н0. Конкурирующей (альтернативной) называют гипотезу Н1, которая противоречит нулевой. Правило, по которому принимают решение о том, принять или отклонить гипотезу Н0, называют критерием. Обычно критерием служит некая случайная величина, вычисляемая по выборке. (Критерием согласия называют критерий проверки гипотезы о предполагаемом законе не известного распределения.) В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов: 1)ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза; 2) ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Вероятность совершить ошибку первого рода принято обозначать через a. Её называют уровнем значимости. Статичтическим критерием называют величину К, которая служит для проверки нулевой гипотезы. Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают. Облать принятия гипотезы – совокупность значений критерия, при которых гипотезу принимают. Основной принцип проверки статистических гипотез: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы – гипотезу принимают. облать значений К разбивается на две подоблати: подоблать принятия нулевой гипотезы (К кр.лев; К кр.прав); подобласть отклонения гипотезы Н0. Из определения уровня значимости следует, что a=ò К кр.лев f(k)dk+ò+¥f(k)dk -¥ К кр.прав. Если плотность распределения К симметрична относительно оси ординат,то ò+¥f(k)dk=a/2. Если f(k) и a известны, то можно найти К кр.прав. К кр.прав. Проверка гипотезы по равенству математических ожиданий нормально распределённых совокупностей при известных дисперсиях. Пусть Х – нормально распределённая случайная величина с неизвестным М(х)=ах и известной D(x)=G2x ; Y - нормально распределённая случайная величина с неизвестным М(х)=ау и известной D(x)=G2 y В результате проведённого эксперимента вычисляется хсредняя и усредняя. Выдвигаем гипотезу Н0: аху и конкурирующую гипотезу Н1: ах не равно ау. Требуется оценить нулевую гипотезу с уровнем значимости a. Решение. Хcр. распределена по нормальному закону Þ М(х)=ах и D(x)=G2x/n. Уср. распределена по нормальному закону Þ М(у)=ау и D(у)=G2y/m Хср.ср. распределена по нормальному закону Þ М(х-у)=0 и D(x-у)=G2x/n+G2y/m. Введём случайную величину К= Хср .- У ср. Ö G2x/n+G2y/m ÞК имеет нормальное распределение с М(к)=0 и D(k)=1. Þ нормальное распределение симетрично Þò+¥f(k)dk=a/2=0,5-Ф(К кр.прав.) К кр.прав. Далее находим по таблицам фукнции Лапласса К кр.прав. Далее находим Кнабл. Затем: 1) Если Кнабл.Î[Ккр.лев; К кр.прав.], то гипотеза Н0 принимается. 2) если КнаблÎ{критическая область}, то гипотеза Н0 отвергается. Проверка гипотезы о равенстве математическом ожидании нормально распределённой случайной величины при равных неизвестных диспрерсиях. Пусть Х – нормально распределённая случайная величина с неизвестным М(х)=ах и D(x)=G2 ; Y - нормально распределённая случайная величина с неизвестным М(х)=ау и D(x)=G2 В результате проведённого эксперимента вычисляется хсредняя и усредняя. Выдвигаем гипотезу Н0: аху и конкурирующую гипотезу Н1: ах не равно ау. Требуется оценить нулевую гипотезу с уровнем значимости a. Решение. Построим К. n . n . S2x=(å(xi-x)2)/(n-1), S2y=(å(yi-y)2)/(n-1). i=1 i=1 Х – случайная величина, распределённая по нормальному закону с числовыми характеристиками (ах, G/Ön). Y – случайная величина, распределённая по нормальному закону с числовыми характеристиками (аy , G/Öm) Оказывается случайная величина S2x и S2y имеют распределение c2(«хи-квадрат») со степенями свободы (n-1) и (m-1). Введём случайную величину U=((n-1)S2x)/G2 +((m-1)S2y)/G2 имеет распределение c2 с числом степеней свободы n+m-2. Случайная величина Х-У имеет нормальный закон распределения с характеристиками (аху, ÖG2/n+G2/m Ø) Поэтому нормализированная случайная величина U = (х-у)-(аху) ÖG2/n+G2/mØ Имеет нормальное распределение N(0,1), а отношение V = ( x- y) –(ax-ay) . ÖU/(m+n-2)Ø sÖ1/m+1/nØÖ[(m-1)S2x/s2+(n-1)S2y/s2]*1/(m+n-2) имеет распределение Стьюдента с (m+n-2) степенями свободы. Таким образом можно найти Кнабл. Кнабл. =(х-у)/Ö(1/m+1/n)*[(m-1)S2x+(n-1)S2y]/(m+n-2)Ø Имеет распределение Стьдента с (m+n-2) степенями своды. Далеее вывод делается как в предыдудей задаче.

8. распределение l2

Распределение l2 – закон распределения непрерывной случайной величины, плотность которой определяется формулой. f l2 (x)= ì 1* e-x/2x(k/2)-1, x>0 í2k/2Г(k/2) î0, x£0 ¥ чило к=n-1 - число степеней свободы. Г(х) – гамма-функция Г(х)=ò tx-1e-tdt 0 C увеличением степеней свободы распределение медленно приближается к нормальному. Причём для f l2 (x) М{ }=n, D{ }=n2 Для дальнейшего «въезжания» необходимо иметь хотя бы отдаленное представление о следующих понятиях

9. Распределение Стьюдента ( или t-распределение) .

Пусть Z – нормальная случайная величина, причём M(Z)=0, s(Z)=1, а V – независимая от Z величина, которая распределена по закону c2 с к степенями свободы. Тогда величина Т= Z ÖV/kØ (отношение нормированной нормальной величины к квадратному корню из независимой случайной величины, которая распределена по закону c2 с к степенями свободы, делённой на к, распределено по закону Стьюдента с к степенями свободы.)

10. Распределение F Фишера – Снедекора.

Если U и V- независимые случайные величины, распределённые по закону c2 со степенями свободы к1 и к2, то величина F=U/k1 V/k2 имеет распределение, которое называется распределением F Фишера-Снедекора со степенями свободы к1 и к2 (иногда его обозначают через V 2) Плотность распределения. f(x) =Г((m+n)/2)*mm/2*nn/2 * xn/2-1 Г(m/2)*Г(n/2) (m+nx)(m+n)/2, x>0 При больших m и n переходит в нормальное распределение. Число степеней свободы k 1=n-1,k2=m-1. (cправка закончена)

11. Проверка аналитических гипотез

1. Сравнение двух средних норм генеральных совокупностей, дисперсии коттрых известны. 2. Сравнение двух средних нормальных генеральных совокупностей, дисперсии, которых неизвестны и одинаковы. Дано Х и У – случайные величины с нормальными распределениями. Найдены Хср. и Уср. Известно – G2x=G2y=G2 MX=MY при конкурирующей гипотезе. Н1: МХ не равно МУ с уровнем значимости a. Схема решений. 1. Находим S2x и S2y - исправленные выборочные. 2. Вычисляем набд=людаемое значение критерия Т= ( x- y) * mn(m+n-2) (n-1)S2x+(m-1)S2Y Ö m+n Оказывается критерий Т –случайная величина распределения Стьюдента. 3. По заданному уровню значений a и числу степеней свободы k=m+n-2 по таблице критических точек распределения Стьюдента находим критическое значение параметра Ткр. (a, к) 4. Сравниваетм Ткр. И Тнабл., делаем вывод: а) если |Тнабл.|< Ткр.(a, к), то нет оснований отвергнуть Н0. б) если |Тнабл.|>Ткр.(a, к), то гипотезу отвергаем. 3 . Сравнение двух дисперсий нормальных генеральных совокупностей. Х и У – нормальные генеральные совокупности. По выборкам найдены S2 x и S2y Требуется проверить гипотезу Н0: DX=DY при конкурирующей гипотезе Н1 а) DX>DY б)DX не равно DY. Схема решение в случае а). 1. Вычисляется наблюдаемое значение критерия. Fнабл.= S2больша е / S2меньшая =S2x/ S2 y. Оказывается, что F – случайная величина, распределённая по закону Фишера-Снедекора. 2.По заданному уровню значимости a и числу степеней свободы k1=n-1,k 2=m-1 находим критическую точку Fкр. (a,k1,k2) k 1 – число степеней свободы большей дисперсии,k2 - число степеней свободы меньшей дисперсии. 3.Сравнивая Fкр. и Fнабл. ,делаем вывод: Если Fкр. < Fнабл., то гипотезу Н 0 принимаем, если Fкр. > Fнабл., то гипотезу отвергаем. Схема решения в случае б) аналогична,только в №2 F(a/2,k1,k2 ), в №3 k1=n-1,k2=m-1 или k2=n-1,k1 =m-1 , так как k1 – число степеней свободы большей дисперсии,k2 - число степеней свободы меньшей дисперсии. Проверка статистической гипотезы о виде закона распределения (Критерий Пирсона). Х – случайная величина. Требуется но уровню значимости a проверить гипотезу о нормальном распределении Х. Схема решения. 1. Весь интервал выборочных значений разделить на S частных интервалов одинаковой длины. Находим середины частичных интервалов, переходим к новому выборочному распрелению. ni –число фактических зачений попавших в i интервал. 2. Для получения последовательности равностоящих вариантов находим X* ср =(åSi=1nixi)/n, G*=Öåni*(xi-x*)2/nØ. попадания х в i интервал. Если х – нормально распределённая случайная величина, то Z распределена по нормальному закону с нулевым математическим ожиданием и единичной дисперсией и pi=Ф(Zi+1) – Ф(Zi ), а Zi=(xi-x*)/G* 3. Нормируем случайную величину х, рассматриваетм величину Z=(x-x*)/G* 4. вычисляем теоретические (вычисленные в предположении нормального распределения) частоты n¢i =n*pi ,pi - веростность 5. В качестве проверки нулевой гипотезы применим критерий Пирсона. c2s(ni-ni¢)2 i=1 ni¢ 6. По таблиые критических точек распределения c2 по заданному уровню значимости a и числу степеней свободы k=s-3 находим критическую точку c2 кр.(a,к). 7. Сравнивая c2кр. и c2набл., делаем вывод: - если c2набл.< c2кр. , то гипотезу о нормальном распределении Х принимаем (с уровнем значимости a) - если c2набл.> c2кр. , то гипотезу о нормальном распределении Х отвергаем. (Аналогично проверяется,что гипотеза принадлежит любому другому распределению, только в № 4 рi будет считаться в соответствии с этим распределением.)