Каталог :: Экономико-математическое моделирование

Курсовая: Минимизация стоимостей перевозок

     Московский Государственный Колледж 
     Информационных Технологий 
                             Курсовой проект                             
                               по предмету                               
                  « Языки программирования и разработка                   
                       программного обеспечения »                        
                                на тему :                                
                   « Минимизация стоимостей перевозок »                   
Работу выполнил
Работу проверили
студент группы П-407
Преподаватели
Чубаков А.С.
Капустина Р.Н.
                                                                    Токарев С.Б.
                                                             1998 г.
     

КР. 2203 81 - 21

ВВЕДЕНИЕ Развитие современного общества характеризуется повышением технического уровня , усложнением организационной структуры производства , углублением общественного разделения труда , предъявлением высоких требований к методам планирования и хозяйственного руководства. В этих условиях только научный подход к руководству к экономической жизни общества позволит обеспечить высокие темпы развития народного хозяйства. В настоящие время новейшие достижения математики и современной вычислительной техники находят все более широкие применение в экономических исследованиях и планированияx. Этому способствует развитие таких разделов математики . как математическое программирование , теория игр , теория массового обслуживания , а так же бурное развитие быстродействующей электронно - вычислительной техники. Одной из основных ставится задача создания единой системы оптимального планирования и управление народным хозяйством на базе широкого применения математических методов в электронно - вычислительной техники в экономике. Решение экстремальных экономических задач можно разбить на три этапа : 1. Построение экономико - математической задачи. 2. Нахождение оптимального решения одним из математических методов. 3. Промышленное внедрение в народное хозяйство. Построение экономическо - математической модели состоит в создании упрощенной математической модели , в которой в схематичной форме отражена структура изучаемого процесса. При этом особое внимание должно быть уделено отражении в модели всех существенных особенностей задачи и учет всех ограничивающих условий , которые могут повлиять на результат. Затем определяется цель решения , выбирается критерий оптимальности и дают математическую формулировку задачи. Составными частями математического программирования являются линейное , нелинейное и динамическое программирование. При исследовании в большинстве случаев имеют место задачи нелинейного программирования , аппроксимация их линейными задачами вызвана только тем , что последние хорошо изучены. Динамическое программирование как самостоятельная дисциплина сформулировалась в пятидесятых годах нашего века. Большой вклад в ее развитие внес американский математик Р. Бельман. Дальнейшие развитие динамическое программирование получило в трудах зарубежных ученых Робертса , Ланга и др. В настоящие время оно в основном развивается в планировании приложений к различным родам многоэтапным процессам.

КР. 2203 81 – 21

2. ЭКОНОМИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ Производственное предприятие имеет в своем составе три филиала которые производят однородную продукцию соответственно в количествах , равных 50 , 30 и 10 единиц. Эту продукцию получают четыре потребителя , расположенных в разных местах. Их потребности соответственны равны 30 , 30 , 10 и 20 единиц. Тарифы перевозов единицы продукции от каждого филиалов соответствующим потребителям задаются матрицей : 1 2 4 1 Сij = 2 3 1 5 3 2 4 4 Составить такой план прикрепления получателе продукции к ее поставщикам , при котором общая стоимость перевозок будет минимальной.

КП. 2203 81 - 21

2.МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ 2. Математическая модель задачи Имеется: m (i=1,2,.,m) – филиалы. Ai – количество единиц продукции «i» филиала. n (j=1,2,.,n) – потребители Bj – потребности «j» потребителя Cij – стоимость перевозки 1 условной единицы продукции от «i» филиала к «j» потребителю Ограничения: 1. Балансовое ограничение. Предполагается, что сумма всех запасов (ai) равна сумме всех заявок (bj):

2. Ресурсное ограничение.

Суммарное количество груза, направленного из каждого пункта отправления во все пункты назначения должно быть равно запасу груза в данном пункте. Это даст m – условий равенств: или

3. Плановое ограничение.

Суммарное количество груза, доставляемого в каждый пункт назначения изо всех пунктов отправления должно быть равно заявке (bj) поданной данным пунктом. Это даст нам n – условий равенств:

КП. 2203 81 - 21 или

4. Реальность плана перевозок. Перевозки не могут быть отрицательными числами:

5. Требуется составить такой план перевозок, при котором все заявки были бы выполнены и при этом общая стоимость всех перевозок была бы минимальна, поэтому целевая функция или критерий эффективности:

КП. 2203 81 – 21

3.ВЫБОР МЕТОДА РЕАЛИЗАЦИИ ПРОДУКЦИИ. ОБОСНОВАНИЕ ВЫБОРА МЕТОДА. Симплекс - метод является универсальным и применяется для решения любых задач. Однако существуют некоторые частные типы задач линейного программирования , которые в силу некоторых особенностей своей структуры допускают решение более простыми методами. К ним относится транспортная задача. Распределительный метод решения транспортной задачи обладает одним недостатком : нужно отыскивать циклы для всех свободных клеток и находить их цены. От этой трудоемкой работы нас избавляет специальный метод решения транспортной задачи , который называется методом потенциалов. Он позволяет автоматически выделять циклы с отрицательной ценой и определять их цены. В отличии от общего случая ОЗЛП с произвольными ограничениями и минимизированной функцией , решение транспортной задачи всегда существует. Общий принцип определения оптимального плана транспортной задачи методом потенциалов аналогичен принципу решения задачи линейного программирования симплекс - метода ,. а именно : сначала находят опорный план транспортной задачи , а затем его улучшают до получения оптимального плана. Далее будет рассматриваться сам метод потенциалов. Решение транспортной задачи , как и любой другой задачи линейного программирования начинается с нахождения опорного решения , или , как мы говорим опорного плана. Для его нахождения созданы специальные методы , самым распространенным из них считается метод северо - западного угла. Определение значений x­­­­i,j начинается с левой верхней клетки таблицы. Находим значения x1,1 из соотношения x11 = min{a 1,b1}. Если ai < b1 то x11=a1 , строка i=1 исключается из дальнейшего рассмотрения , а потребность первого потребителя b1 уменьшается на величину a1. Если a1>b1 , то x11=b1 , столбец j=1 исключается из дальнейшего рассмотрения , а наличие груза у первого поставщика a1 уменьшается на величину b1. Если a1=b1 , то x11=a1=b1 , строка i=1 и столбец j=1 исключаются из дальнейшего рассмотрения. Данный вариант приводит к вырождению исходного плана. Затем аналогичные операции проделывают с оставшийся частью таблицы , начиная с его северо - западного угла. После завершения оптимального процесса необходимо провести проверку полученного плана на вырожденность. Если количество заполненных клеток равно m + n -1 , то план является невырожденным. Если план вырожденный , т.е количество заполненных клеток стало меньше m + n -1 , то незаполненные клетки с минимальными стоимостями перевозок заполняются нулями , чтобы общие количество заполненных клеток стало равным m + n -1. Транспортная задача с неправильным балансом называется открытой моделью . Чтобы ее решить , необходимое сбалансировать. Достигается это следующим образом: Когда еai >еbj это транспортная задача с избытком запасов. еxij<= ai (i=1,m) КП. 2203 81 – 21 еxij=bj (j=1,n) Здесь вводим фиктивного потребителя Bф и приписываем ему заявку b ф=еai - еbj . Вводим фиктивный сотолбец , т.е C=0 (i =1,m). Все стоимости будут равны нулю , это значит , что грузы c останутся невостребованными , т.е введением фиктивного потребителя , мы свели транспортную задачу с неправильным балансом к задаче с правильным балансом. Если сумма подданных заявок превышает наличные запасы еbj >еa­i , то такая задача называется – транспортная задача с избытком запаса. Эту задачу можно свести к обычной задаче с правильным балансом , если ввести фиктивный пункт отправления Aф , приписав ему фиктивный запас aф =еbj - еai . Добавляем фиктивную строку , где Cфi= 0 ( j=1,n). Стоимости будут равны нулю . это значит , что часть заявок cфj останутся неудовлетворенными. Среди них могут оказаться те потребности , которые необходимо обязательно удовлетворить. Для этого вводим коэффициент: R=еai : еbj и каждый запас bj умножаем на этот коэффициент. Таким образом задача сведена к транспортной задаче с правильным балансом. Построенный выше исходный план можно довести до оптимального с помощью метода потенциалов. Каждому поставщику Ai поставим в соответствии некоторые числа ai , называемые потенциалом , а каждому потребителю Bj – число bj . Для каждой независимой клетки , т.е для каждой независимой переменной рассчитываются так называемые косвенные тарифы ( Cўij) по формуле Cўij= ai + bj. А для заполненных клеток , т.е базисных переменных Cўij =Cij. Проверяем полученный план на оптимальность. Если для каждой независимой клетки выполняется условие Cўij - Cij <=0 , то такой план является оптимальным. Если хотя бы в одной свободной клетке Cўij > Cij , то следует приступить к улучшению плана. Для правильного перемещения перевозок , чтобы не нарушить ограничений , строится цикл , т.е замкнутый путь , соединяющий выбранную свободную клетку с той же самой , и проходящий через заполненные клетки. Цикл строится следующим образом. Вычеркиваются все строки и столбцы , содержащие ровно одну заполненную клетку (выбранная при этом клетка считается заполненной). Все остальные заполненные клетки составляют и лежат в его углах. Направление построения цикла ( по часовой стрелке или против ) несущественно. В каждой клетки цикла , начиная со свободной , проставляются поочередно знаки І + І и І - І . В клетках со знаком І - І выбирается минимальная величина. Новый базисный план начинается путем сложений выбранной величины с величинами , стоящих в клетках цикла со знаком І + І и вычитанием этой величины из величины , стоящей в клетке со знаком І - І . Выбранная минимальная величина будет соответствовать перемененной выводимой из базиса. КП. 2203 81 - 21 Значения переменных включенных в цикл , после описанной корректировки , переносятся в новую таблицу. Все остальные переменные записываются в новую таблицу без изменения. Осуществляется переход к шагу один. Дальше подсчитывается значение целевой функции F = ее Cij· cij min. Метод потенциалов обеспечивает монотонное убывание значений целевой функции и позволяет за конечное число шагов найти его минимум.

КР. 2203 81 - 21

5.КРАТКАЯ ХАРАКТЕРИСТИКА ЭВМ И ЕГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ. Слово « компьютер »означает « вычислитель » , т.е устройство для вычислений. Это связано с тем , что первые компьютеры создавались как устройства для вычислений , грубо говоря , усовершенствованные , арифметические арифмометры. Принципиальное отличие компьютеров от арифмометров и других счетных устройств состояло в том , что арифмометры могли выполнять лишь отдельные вычислительные операции(сложение , вычитание , умножение , деление и др.) , а компьютеры позволяли проводить без участия человека сложные последовательные вычислительные операции по заранее заданной инструкции - программе. Кроме того , для хранения данных , промежуточных и итоговых результатов вычислений компьютеры содержат память. Компьютер - это универсальный прибор для переработки информации. Но сам по себе компьютер является просто ящиком с набором электронных схем. Он не обладает знаниями ни в одной области своего применения. Все эти знания сосредоточены в выполняемых на компьютере программах. Для того , чтобы компьютер мог осуществить определенные действия , необходимо составить для компьютера программу , т.е точную и пол=дробную последовательность инструкций на понятном компьютере языке , как надо правильно обрабатывать информацию. Меняя программы для компьютера , можно привести его в рабочие место бухгалтера ил конструктора , статистика или агронома , редактировать документ или играть в игры. Поэтому для эффективного использования компьютера необходимо знать назначение и свойства необходимые при работе с ним программ. Программы . работающие на компьютеры можно разделить на три категории : n Прикладные программы , непосредственно обеспечивающие выполнение необходимых пользователям работ : редактирование текстов , рисование картинок , обработку информационных массивов и т.д. n Системные программы , выполняющие различные вспомогательные функции , например создание копий используемой информации , проверку работоспособности устройств компьютера и т.д. Огромную роль среди всех системных программ играет операционная система - программа , управляющая компьютером , запускающая все другие программы и выполняющая для них различные сервисные функции. n Инструментальные системы (системы программирования ) , обеспечивающие создание новых программ для компьютера.

КР. 2203 81 - 21

6.ОБОСНОВАНИЕ ВЫБОРА ЯЗЫКА

В 1992 году фирма Borland International выпустила два пакета программирования , основанные на использовании языка Паскаль - Borland Pascal 7.0 и Turbo Pascal 7.0. Система программирования Turbo Pascal , разработанная американской корпорацией Borland остается одной из самых популярных систем программирования в мире. Этому способствует , с одной стороны , простота лежащего в ее основе языка программирования Паскаль , а с другой - труд и талант сотрудников Borland во главе с идеологом и создателем Turbo Pascal Андерсом Хейлсбергом , приложившим немало усилий к ее совершенствованию. Придуманный швейцарским ученым Никласом Виртом как средство для обучения студентов программированию , язык Паскаль стараниями А. Хейлсберга превратилась в мощною современною профессиональную систему программирования , которой по плечу любые задачи - от создания простых программ , предназначенных для решения несложных вычислительных задач , до разработки сложнейших реляционных систем управления базами данных. Появление Windows и инструментальных средств Borland Pascal with Object и Delphi для разработки программ в среде Windows лишний раз показало , какие поистине не исчерпывающие возможности таит он в себе : и Borland Pascal , и используемый в Delphi язык Object Pascal основываются на Турбо Паскале и развивают его идеи. Пакет Turbo Pascal включает в себя как язык программирования - одно из расширений языка Паскаль для ЭВМ типа IBM , так и среду , предназначенную для написания , отладки и запуска программ. Язык характеризуется расширенными возможностями по сравнению со стандартом , хорошо развитой библиотекой модулей , позволяющей использовать возможности операционной системы , создавать оверлейные структуры , организовывать ввод - вывод , формировать графические изображения и т.д. среда программирования позволяет создавать тексты программ . компилировать их , находить и справлять ошибки , компоновать программы из отдельных частей . включая стандартные модули , отлаживать и выполнять отлаженную программу. Пакет представляет пользователю большой объем справочной информации , позволяет применять объектное - ориентированное программирование , обладает встроенным ассемблером , имеет инструментальное средство для создания интерактивных программ - Turbo Vision и т.д.

КР. 2203 81 - 21

7.РЕШЕНИЕ ЗАДАЧИ ТЕСТА ДЛЯ НАПИСАНИЯ И ОТЛАДКИ ПРОГРРАММЫ.

B1

B2

B3

B4

i

ai

A1

1 1

30

2 2

20

0 4

4 1

50

0

A2

2 2

3 3

10

1 1

10

5 5

10

30

1

A3

1 3

2 20 4

4 4

10

10

0

заявки

bj

30

30

10

20

90

Bj

1

2

0

4

1,2 1,4 10 2,2 2,4
B1B2 B3B4

ai

ai

A1

1 1

30

2 2

10

0 4

1 1

10

50

0

A2

2 2

3 3

20

1 1

10

2 5

30

1

A3

4 35 23 4

4 4

10

10

3

bj

30

30

10

20

90

Bj

1

2

0

1

1,1 1,4 10 3,1 3,4

КР. 2203 81 - 21

B1

B2

B3

B4

ai

ai

A1

1 1

20

2 2

10

0 4

1 1

20

50

0

A2

2 2

3 3

20

1 1

10

2 5

30

1

A3

3 3

10

4 2 2 43 4

10

2

bj

30

30

10

20

90

B­j

1

2

0

1

1,1 1,2 10 3,1 3,2

B1

B2

B3

B4

ai

ai

A1

1 1

30

-1 2-3 4

1 1

20

50

0

A2

5 2

3 3

20

1 1

10

5 5

30

4

A3

4 3

2 2

10

0 4

4 4

E

10+E

3

bj

30

30

10

20+E

90+E

Bj

1

-1

-3

1

1,1 1,2 10 2,1 2,2

КР. 2203 81 - 21

B1

B2

B3

B4

ai

ai

A1

1 1

10

2 2

20

0 4

1 1

20

50

0

A2

2 2

20

3 3

1 1

10

2 5

30

1

A3

1 3

2 2

10

0 41 4

10

0

bj

30

30

10

20

90

Bj

1

2

0

1

F­min=1·10 +2·20 +2·10 +1·10 +2·20 +20*1 = 140 Найден оптимальный план перевозок , равный 140.

КР. 2203 81 – 21

8.АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ В процессе решения транспортной задачи методом потенциалов было получено решение , которое является оптимальным , потому , что для каждой независимой клетки выполняется критерий оптимальности плана транспортной задачи : Cўij –Cij <=0 Так же суммарная стоимость перевозок груза с каждой последующей итерацией уменьшалась и оказалась равной 140 рублям. Еще одним немаловажным фактором является то , что потребность получателя в грузе полностью удовлетворена , а поставщик реализовал весь свой груз. Результат подсчитанный ручным счетом сходится с ответом , полученным на ЭВМ с помощью составленной программы. Расхождений нет. Вектор полученных результатов: 10 20 0 20 c= 20 0 10 0 0 10 0 0 КП. 2203 81 - 21 ЗАКЛЮЧЕНИЕ Основной задачей данного курсового проекта являеся нахождение оптимального плана перевозок груза от поставщиков к потребителям . нахождение минимальной функции. Эта задача сводится к транспортной задаче. В процессе разработки курсового проекта былы составлена универсальная программа для решения аналогичных задач. Правильность работы задачи определяется с помощью задачи - теста . Для проверки правильности работы работы программы были заданны : количество поставщиков и потребителей , наличие груза , заявки и тарифы перевозок. Результаты были подсчитаны вручную , а их решение совпадает с результатом машинного счета. Полученный верный результат позволяет применять данную программу к производственным и транспорным задачам.